請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33341
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭明良 | |
dc.contributor.author | Been-Ren Lin | en |
dc.contributor.author | 林本仁 | zh_TW |
dc.date.accessioned | 2021-06-13T04:35:30Z | - |
dc.date.available | 2008-08-03 | |
dc.date.copyright | 2006-08-03 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-19 | |
dc.identifier.citation | 第一章
1. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin 2000;50:7-33. 2. Annual Cancer report from Taiwan Cancer Registration system; Department of Health, ROC. 2000 3. Ries LA, Hankey BF, Edwards BK. Cancer statistics review 1973–87. Bethesda (MD): National Institutes of Health, National Cancer Institute; 1990 Report No.: DHHS Publ No. (NIH) 90-2789. 4. Galandiuk S, Wieand HS, Moertel CG et al. Patterns of recurrence after curative resection of carcinoma of the colon and rectum. Surg Gynecol Obster 1992;174: 27-32. 5. Brigstock DR. The connective tissue growth factor/cysteine-rich 61 /nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189-206. 6. Lau LF, Lam SC. The CCN family of angiogenic regulators: The integrin connection. Exp Cell Res 1999;248:44-57. 7. Perbal B. The CCN family of genes: A brief history. Mol Pathol 2001;54:103-4. 8. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: Structural and functional issues. Mol Pathol 2001;54:57-79. 9. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993;327:125–130. 10. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3:537-549. 11. Pan LH, Beppu T, Kurose A, Yamauchi K, Sugawara A, Suzuki M, Ogawa A, Sawai T. Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res 2002;24:677-683. 12. Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D, Zimmermann A, Buchler MW. Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 2002;26:420-427. 13. Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, Wilda M, Iwamura T, Beger HG, Adler G, Gress TM. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 1999;18:1073-1080. 14. Kubo M, Kikuchi K, Nashiro K, Kakinuma T, Hayashi N, Nanko H, Tamaki K. Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br J Dermatol 1998;139:192-197. 15. Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K, Kawai A, Nakanishi T, Takigawa M, Inoue H. Expression of connective tissue growth factor in cartilaginous tumors. Cancer 2000;89:1466-1473. 16. Moritani NH, Kubota S, Nishida T, Kawaki H, Kondo S, Sugahara T, Takigawa M. Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett 2003;192:205-214. 17. Planque N, Perbal B. A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 2003;3:15 18. Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. Journal of the National Cancer Institute 2004;96:364-375 第二章 1. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin 2000;50:7-33. 2. Annual Cancer report from Taiwan Cancer Registration system; Department of Health, ROC. 2000 3. Ries LA, Hankey BF, Edwards BK. Cancer statistics review 1973–87. Bethesda (MD): National Institutes of Health, National Cancer Institute; 1990 Report No.: DHHS Publ No. (NIH) 90-2789. 4. Galandiuk S, Wieand HS, Moertel CG et al. Patterns of recurrence after curative resection of carcinoma of the colon and rectum. Surg Gynecol Obster 1992;174: 27-32. 5. Brigstock DR. The connective tissue growth factor/cysteine-rich 61 /nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189-206. 6. Lau LF, Lam SC. The CCN family of angiogenic regulators: The integrin connection. Exp Cell Res 1999;248:44-57. 7. Perbal B. The CCN family of genes: A brief history. Mol Pathol 2001;54:103-4. 8. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: Structural and functional issues. Mol Pathol 2001;54:57-79. 9. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993;327:125–130. 10. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3:537-549. 11. Pan LH, Beppu T, Kurose A, Yamauchi K, Sugawara A, Suzuki M, Ogawa A, Sawai T. Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res 2002;24:677-683. 12. Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D, Zimmermann A, Buchler MW. Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 2002;26:420-427. 13. Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, Wilda M, Iwamura T, Beger HG, Adler G, Gress TM. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 1999;18:1073-1080. 14. Kubo M, Kikuchi K, Nashiro K, Kakinuma T, Hayashi N, Nanko H, Tamaki K. Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br J Dermatol 1998;139:192-197. 15. Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K, Kawai A, Nakanishi T, Takigawa M, Inoue H. Expression of connective tissue growth factor in cartilaginous tumors. Cancer 2000;89:1466-1473. 16. Moritani NH, Kubota S, Nishida T, Kawaki H, Kondo S, Sugahara T, Takigawa M. Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett 2003;192:205-214. 17. Planque N, Perbal B. A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 2003;3:15 18. Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. Journal of the National Cancer Institute 2004;96:364-375 19. Chen WS, Lin WC, Kou YR et al. Possible effect of pneumoperitoneum on the spreading of colon cancer tumor cells. Diseases of the Colon & Rectum 1997;40: 791-797. 20. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ. & Hanski C. Target genes of β-catenin-T cell-factor/lymphoid -enhancer-factor signaling in human colorectal carcinomas Proc. Natl. Acad. Sci. USA 1999;96, 1603–1608. 21. Ganesh S, Sier CF, Heerding MM, van Krieken JH, Griffioen G, Welvaart K, van de Velde CJ, Verheijen JH, Lamers CB, Verspaget HW. Contribution of plasminogen activators and their inhibitors to the survival prognosis of patients with Dukes' stage B and C colorectal cancer. Br J Cancer. 1997;75:1793-801. 22. Mulder JWR, Kruyt PM, Sewnath M, Oosting J, Seldenrijk CA, Weidema WF, Offerhaus GJA, Pals ST: Colorectal cancer prognosis and expression of exon-v6 containing CD44 proteins. Lancet 1995; 344:1470–1472 23. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. β-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999;155:1033-1038. 24. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJH, Rubinfeld B, Polakis P, Matrisian LM. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 1999;18:2883-2891 25. Andrei VO, Kaname Y, Masayoshi M, Toshinari M. Oncogenic β-catenin and MMP-7 (Matrilysin) cosegregate in late-stage clinical colon cancer. Gastroenterology 2002; 122: 60-71 26. Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducer β-catenin controls fibronectin expression. Mol Cell Biol 1999;19:5576–5587. 27. Inufusa H, Nakamura M, Adachi T, Nakatani Y, Shindo K, Yasutomi M, Matsuura H. Localization of oncofetal and normal fibronectin in colorectal cancer. Correlation with histologic grade, liver metastasis, and prognosis. Cancer. 1995 ;75:2802-8. 28. Macdonald JS. Adjuvant therapy of colon cancer. CA Cancer J Clin 1999;49: 202-219. 29. Allegra CJ, Paik S, Colangelo LH, Parr AL, Kirsch I, Kim G, Klein P, Johnston PG, Wolmark N, Wieand HS. Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes' B and C colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J Clin Oncol. 2003 ;21:241-50. 30. Bell SM, Scott N, Cross D, Sagar P, Lewis FA, Blair GE, Taslor GR, Dixon MF,Quirke P. Prognostic value of p53 overexpression and c-Ki-ras gene mutations in colorectal cancer. Gastroenterology 1993;104:57–64. 31. Benhattar J, Losi L, Chauber P, Givel J-C, Costa J. Prognostic significance of K-ras mutations in colorectal carcinoma. Gastroenterolgy 1993;104:1044–8. 32. Martinez-Lopez E, Abad A, Font A, Monzo M, Ojanguren I, Pifarre A, Sanchez JJ, Martin C, Rosell R. Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer. Gastroenterology 1998;114:1180–7. 33. Kapitanovic S, Radosevic S, Kapitanovic M, Ajndelinovic S, Ferecic Z, Tavassoli M, Primorac D, Sonicki Z, Spaventi S, Pavelic K, Spaventi R. The expression of p185 Her-2/neu correlates with the stage of disease and survival in colorectal cancer. Gastroenterology 1997;112:1103–13. 34. Augenlicht LH, Wadler S, Corner G, Richards C, Ryan L, Multani AS, Pathak S, Benson A, Haller D and Heerdt BG. Low-level c-myc amplifications in human colonic carcinoma cell lines and tumours: a frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial. Cancer Res 1997;57: 1769–1775 35. Ishigami SI, Arii S, Furutani M, Niwano M, Harada T, Mizumoto M, Mori A, Onodera H, Imamura M. Predictive value of vascular endothelial growth factor (VEGF) in metatasis and prognosis of human colorectal cancer. British Journal of Cancer 1998;78:379–84. 36. Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA. Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids: identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem 1997; 272:20275–20282 37. Ball DK, Surveyor GA, Diehl JR, Steffen CL, Uzumcu M, Mirando MA, Brigstock DR 1998 Characterization of 16- to 20-kilodalton (kDa) connective tissue growth factors (CTGFs) and demonstration of proteolytic activity for 38-kDa CTGF in pig uterine luminal flushings. Biol Reprod 1998; 59:828–835 38. Frazier K and Grotendorst G: Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Int J Biochem Cell Biol 1997; 29:153-161 39. Igarashi A, Hayashi N, Nashiro K, Takehara K. Differential expression of connective tissue growth factor gene in cutaneous fibrohistiocytic and vascular tumors. J Cutan Pathol. 1998 ;25:143-8 40. Gilmour L, Price S, Whetton AD, Perbal B and Irvine AE. Deregulation of nov expression in chronic myeloid leukemia [abstract]. Mol Pathol 2003; 56:73. 41. Chevalier G, Yeger H, Martinerie C, Laurent M, Alami J, Schofield PN, Perbal B. novH: differential expression in developing kidney and Wilm's tumors. Am J Pathol 1998 ;152:1563-75 42. Sampath D, Zhu Y, Winneker RC and Zhang Z. Aberrant expression of Cyr61, a member of the CCN (CTGF/Cyr61/Cef10/NOVH) family, and dysregulation by 17 beta-estradiol andbasic fibroblast growth factor in human uterine leiomyomas. J Clin Endocrinol Metab 2001; 86:1707-1715 43. Genini M, Schwalbe P, Scholl FA and Schufer BW. Isolation of genes differentially expressed in human primary myoblasts and embryonal rhabdomyosarcoma. Int J Cancer 1996; 66:571-577 44. Pilarsky CP, Schmidt U, Eissrich C, Stade J, Froschermaier SE, Haase M, Faller G, Kirchner TW. Wirth MP. Expression of the extracellular matrix signaling molecule Cyr61 is downregulated in prostate cancer. Prostate 1998; 36:85-91. 45. Tong X, Xie D, O'Kelly J, Miller CW, Muller-Tidow C and Koeffler HP. Cyr61, a member of CCN family, is a tumour suppressor in non-small cell lung cancer. J Biol Chem 2001; 276:47709-47714 46. Polakis P. Wnt signal and cancer. Genes Del 2000; 14: 1837-1851 47. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003 Jun 5;1653(1):1-24. 48. Haeri R, Douglas WG, Craig BB, James AP, Jeffrey AD. Suppression of β-Catenin Inhibits the Neoplastic Growth of APC-Mutant Colon Cancer Cells Cancer Res. 2001 61: 6563-6568. 49. Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999 ;398:422-6 50. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science. 1998 ;281:1509-12 51. Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 2001 ;61:6050-4 52. Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem. 2001;276(13):10443-52. 53. Chen N, Chen CC, Lau LF. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans J Biol Chem. 2000;275(32):24953-61. 54. Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem. 1999; 274(34) :24321-7. 55. Kireeva ML, Lam SC, Lau LF. Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem. 1998 Jan 30;273(5):3090-6. 56. Segarini PR, Nesbitt JE, Li D, Hays LG, Yates JR 3rd, Carmichael DF. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem. 2001 ;276(44):40659-67. 57. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A. 1998 ;95(19):11211-6. 58. Easwaran V, Pishvaian M, Salimuddin, Byers S. Cross-regulation of β-catenin-LEF/TCF and retinoid signaling pathways. Curr Biol. 1999; 9:1415-8 59. Mercurio S, Latinkic B, Itasaki N, Krumlauf R, Smith JC. Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development. 2004 ;131(9):2137-47. 60. Xiao JH, Ghosn C, Hinchman C, Forbes C, Wang J, Snider N, Cordrey A, Zhao Y, Chandraratna RA. Adenomatous polyposis coli (APC)-independent regulation of β-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem. 2003 ;278:29954-62 61. Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros AG, Lafarga M, Munoz A. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J Cell Biol. 2001 ;154:369-87. 62. Amir AL, Barua M, McKnight NC, Cheng S, Yuan X, Balk SP. A direct β-catenin-independent interaction between androgen receptor and T cell factor 4. J Biol Chem. 2003 ;278:30828-34. 第三章 1. Chu DZ, Lang NP, Thompson C, et al: Peritoneal carcinomatosis in nongynecologic malignancy: A prospective study of prognostic factors. Cancer 63:364-367, 1989 2. Jayne DG, Fook S, Loi C, et al: Peritoneal carcinomatosis from colorectal cancer. Br J Surg 89:1545 -1550, 2002 3. Improved survival with preoperative radiotherapy in resectable rectal cancer: Swedish Rectal Cancer Trial. N Engl J Med 336:980-987, 1997 4. Glehen O, Kwiatkowski F, Sugarbaker PH, et al. Cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: a multi-institutional study. J Clin Oncol. 2004 Aug 15;22(16):3284-92. 5. Midgley R, Kerr D: Colorectal cancer. Lancet 353:391-399, 1999 6. Glehen O, Mohamed F, Gilly FN. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol. 2004; 5(4):219-28 7. Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol 2003; 21: 3737–43. 8. Glehen O, Mithieux F, Osinsky D, Beaujard AC et al. Surgery combined with peritonectomy procedures and intraperitoneal chemohyperthermia in abdominal cancers with peritoneal carcinomatosis: a phase II study J Clin Oncol. 2003 Mar 1;21(5):799-806. 9. Takatsuki H, Komatsu K, Sano R, Takada Y, et al. Adhesion of gastric carcinoma cells to peritoneum mediated by alpha3beta1 integrin (VLA-3). Cancer Res. 2004; 64(17):6065-70 10. Ishii Y, Ochiai A, Yamada T, Akimoto S, Yanagihara K, Kitajima M, Hirohashi S Integrin alpha6beta4 as a suppressor and a predictive marker for peritoneal dissemination in human gastric cancer. Gastroenterology. 2000; 118(3):497-506 11. Rocnik EF, Liu P, Sato K, Walsh K, Vaziri C. The novel SPARC family member SMOC-2 potentiates angiogenic growth factor activity J Biol Chem. 2006 Jun 14; [Epub ahead of print] 12. Bornstein P. Matricellular proteins: an overview. Matrix Biol 2000;19:555–556. 13. Bornstein P, Sage EH Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002 Oct;14(5):608-16. 14 Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 1999;248:44–57. 15. Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993;327:125–30. 16. Moussad EE, Brigstock DR. Connective tissue growth factor: what’s in a name? Mol Genet Metab 2000;71:276–292. 17. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189–206. 18. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol 2001;54:57–79. 19. Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 1999 ; 19 : 2958 – 66. 20. Planque N, Perbal B. A structural approach to the role of CCN (CYR61/ CTGF/NOV) proteinsin tumourigenesis. Cancer Cell Int 2003 ; 3 : 15 21. Gao R, Brigstock DR Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem. 2004; 279 (10):8848-55. 22. Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem.2001; 276(13):10443-52. 23. Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem. 1999 ; 274(34):24321-7. 24. Lin BR, Chang CC, Che TF, Chen ST, Chen RJ, Yang CY, Jeng YM, Liang JT, Lee PH, Chang KJ, Chau YP, Kuo ML. Connective tissue growth factor inhibits metastasis and acts as an independent prognostic marker in colorectal cancer. Gastroenterology. 2005;128(1):9-23. 25. Hojilla CV, Mohammed FF, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer. 2003; 89(10):1817-21 26. Leeman MF, Curran S, Murray GI New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression J Pathol. 2003;201(4):528-34 27. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression Nat Rev Cancer. 2002;2(3):161-74 28. Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut. 1999;45(2):252-8 29. Ishikawa T, Ichikawa Y, Mitsuhashi M, Momiyama N, Chishima T, Tanaka K, Yamaoka H, Miyazakic K, Nagashima Y, Akitaya T, Shimada H. Matrilysin is associated with progression of colorectal tumor. Cancer Lett. 1996;107(1):5-10 30. Shepherd NA, Baxter KJ, Love SB The prognostic importance of peritoneal involvement in colonic cancer: a prospective evaluation. Gastroenterology. 1997;112(4):1096-102. 31. Frazier K and Grotendorst G: Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Int J Biochem Cell Biol 1997; 29:153-161 32. Igarashi A, Hayashi N, Nashiro K, Takehara K. Differential expression of connective tissue growth factor gene in cutaneous fibrohistiocytic and vascular tumors. J Cutan Pathol. 1998 ;25:143-8 33. Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, Wilda M, Iwamura T, Beger HG, Adler G, Gress TM. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 1999;18:1073-1080. 34. Pan LH, Beppu T, Kurose A, Yamauchi K, Sugawara A, Suzuki M, Ogawa A, Sawai T. Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res 2002;24:677-683 35. Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis J Natl Cancer Inst. 2004;96(5):364-75 36. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. β-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999;155:1033-1038. 37. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJH, Rubinfeld B, Polakis P, Matrisian LM. The metalloproteinase matrilysin is a target of | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33341 | - |
dc.description.abstract | 大腸直腸癌在台灣是造成國內癌症死亡原因的第三位,每年新增的病例數約為七千例,僅次於肝癌和肺癌。就癌症分期而言,第一期的五年存活率約在90%,第二期的五年存活率約在60-80%,第三期的五年存活率則約在30-60%,若是有遠端轉移的患者﹝第四期﹞,則其五年存活率大概只有5%。而造成這些癌症病人的死亡主因是局部的復發﹝例如術後的腹膜侵犯﹞和遠端器官﹝常見的器官依序是肝臟、肺與骨骼﹞的轉移。因此,尋找這群病人的可能危險因子以及了解其相關的分子機轉,對癌症病患的治療就顯得相當的重要。在過去十年內,一群新的蛋白質所構成的CCN家族,已經被發現並加以分析。現有的結果顯示,這群蛋白似乎和很多重要生理功能的調節有關,包括細胞的分化、生長、凋亡以及和細胞外基質的附著、血管新生等都有很大的相關。因此,我們就針對CCN家族中的結締組織生長因子(CTGF)在大腸直腸癌所扮演的角色來作一系列的研究。由於學生本身是一位臨床醫師,因此在研究方向上,主要是針對結締組織生長因子和造成這些癌症病人死亡的主因中最主要的腹膜侵犯和遠端器官轉移之間的可能影響和臨床意義來著手。
首先,我們的病理組織切片免疫染色的結果顯示,結締組織生長因子(CTGF) 在第二、三期大腸直腸癌患者中,具有預測病人預後的能力。也就是說當病人的免疫染色結果為結締組織生長因子高度表現時,其五年存活率高於低表現者,且具有統計顯著性;同時其五年的疾病復發率也較低表現性者來的有義意的減少。另一方面在細胞株的研究上也獲得類似的結果:當在高表現結締組織生長因子、低侵犯性的大腸直腸癌細胞株(CT26)予以轉殖anti-sense CTGF 質體時,其侵犯能力會增加;同時這樣的細胞株(CT26/ anti-CTGF)在模擬大腸直腸癌肝臟轉移的小鼠脾臟內注射的動物實驗中,也顯示出其肝臟轉移的能力比母細胞株(CT26/neo)來的強。這些證據都明白地指出:結締組織生長因子的表現能影響大腸直腸癌細胞的侵襲和轉移能力。至於大腸直腸癌已知的致病序列機轉中,都會強調Wnt/β-catenint/Tcf-4的訊息傳遞;也就是在大腸直腸細胞癌化的過程中,Wnt/ β-catenin/Tcf-4訊息會被啟動而造成下游的作用因子如:MMP-7, cyclin D1,uPAR等被表現出來。在我們的研究中也指出結締組織生長因子(CTGF)的表現確實會在Wnt/β-catenin/Tcf-4的reporter assay 中減少其數值。 另一方面,大腸直腸癌的腹腔轉移是在治癒性大腸直腸切除後排名第二位的轉移形式 (25-35%),僅次於肝臟轉移。在臨床上,一開始診斷出有大腸直腸癌時,大約有10﹪的病人就已經有癌細胞的腹腔轉移。這類的病人其預後相當的不好(平均存活時間只有六個月),因此一般皆被認為是癌末的情況,而只接受緩解性的治療而已。雖然近來有報告指出,若選擇性的使用減縮手術和腹腔內化學治療,可以增加病人的存活率,但其術後的高併發症發生率(22.9%)和致死率(4% )無形中也限制了這項治療方法的使用空間。因為癌細胞腹腔轉移的步驟是自原病灶脫離,而能在腹腔液中存活,接著是沾附至腹膜而進一步的增殖生長。所以我們分析結締組織生長因子是否也在此步驟中扮演促進細胞凋亡與抑制沾附能力的角色,而造成腹腔轉移的抑制。在第三章中,我們分析出高表現結締組織生長因子的大腸直腸癌細胞株,在細胞離體實驗中,對無貼狀態引起的細胞凋亡較明顯,而且其沾附能力也隨之降低。我們亦進行動物腫瘤生長的實驗來證明結締組織生長因子確能抑制腹腔轉移的現象。 總結來說,本論文提供了結締組織生長因子可抑制人類大腸直腸腺癌遠端轉移及腹腔生長的證據;作為一個癌細胞侵襲與沾附抑制蛋白,無貼附狀態細胞凋亡促進者,結締組織生長因子作為臨床治療的蛋白質類藥物,是相當具潛力而可期待的。 | zh_TW |
dc.description.abstract | Colorectal cancer is the third leading cause of cancer death in men and women in Taiwan and the second cause in the United States. The major cause of cancer death in patients with colorectal cancer is local recurrence and distal metastasis after curative surgical treatment, intensive chemotherapy and/or radiotherapy. So, it is important for these patients to find the possible risk factors and underlying molecular mechanism of local recurrence and metastasis. Over the last decade, a new family of structurally related proteins has been described that comprises cysteine-rich 61(CYR61; CCN1), connective tissue growth factor (CTGF; CCN2), nephroblastoma over- expressed (NOV; CCN3), Wnt-induced secreted protein-1 (WISP-1; CCN4), WISP -2 (CCN5), and WISP-3 (CCN6). Collectively, CCN proteins appear to be important regulators of diverse cellular functions including cell cycle progression, division, chemotaxis, differentiation, apoptosis and adhesion and angiogenesis. Because I am a clinical surgeon, the research direction would focus on the clinical meanings and the underlying possible mechanism between CTGF and the major causes of cancer death in patients with CRC ----- distal metastasis and peritoneal seeding.
In our data, Stages II and III CRC patients whose tumors displayed high CTGF expression in the immunohistochemical staining had a significantly higher overall survival and a disease-free advantage over CRC patients with a low CTGF expression (P < 0.001). In in vitro invasion assays, alterations in the CTGF level in CRC cell lines modulated their invasive ability with an inverse correlation. In addition, a reduction in the CTGF level of CT-26 cells after stable transfection with antisense CTGF resulted in increased liver metastasis in BALB/c mice. The activity of β-catenin/Tcf signaling pathway in these CTGF-transfected cells was strongly attenuated at the level of transcription. Besides, peritoneal dissemination is an important metastatic mode of intra-abdominal cancers such as gastric, colorectal, and ovarian cancer. At initial diagnosis of colorectal cancer, the peritoneal surface is involved by tumor in 10 to 15% patients. Next to the liver, peritoneal surfaces are the most common sites for cancer recurrence (25% to 35%) after so-called curative resection of colorectal cancer. Because this mode of metastasis severely affects the prognosis of cancer patients (median survival 5-6 months), colorectal peritoneal carcinomatosis has previously been considered a pre-terminal condition suitable for palliative treatment. The steps of peritoneal metastasis include detaching from the primary tumor mass, surviving in the abdominal fluid (ascites) and then adhering to the peritoneum, proliferating in the seeding sites. In order to understand whether CTGF is involved in anoikis and adhesion regulation, we analyzed that several colorectal cancer cell lines which expressed different levels of CTGF undergo apoptosis in anoikis condition and own adhesion ability. In chapter 3, we demonstrated that highly CTGF expressed cells showed increased sensitivity to anoikis and reduced adhesion capacity in vitro. We further demonstrated that CTGF inhibited in vivo tumor growth and peritoneal seeding by animal models. In summary, these studies provide evidences for the tumor metastasis suppressing effect of CTGF in the colorectal adenocarcinoma. Herein, as an invasion blocker, anoikis promoter and adhesion inhibitor that specifically targets cancer cells, CTGF has a unique potential for colorectal adenocarcinoma treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:35:30Z (GMT). No. of bitstreams: 1 ntu-95-D90447005-1.pdf: 2928298 bytes, checksum: 2b2655b6e9466307138761b9fe13ffb6 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要 P.3
英文摘要 P.6 第一章 序論 第一節 人類大腸直腸腺癌 P.9 第二節 結締組織生長因子 P.11 第三節 本論文的研究動機與方向 P.13 第四節 參考文獻 P.14 第二章 結締組織生長因子抑制人類大腸直腸癌的轉移並作為獨立的臨床預後標誌 第一節 摘要 P.17 第二節 前言 P.18 第三節 材料與方法 P.20 第四節 實驗結果 P.28 第五節 討論 P.35 第六節 參考文獻 P.40 第七節 附圖及說明 P.48 第三章 結締組織生長因子為大腸直腸癌腹膜轉移之重要調控者 第一節 摘要 P.66 第二節 前言 P.68 第三節 材料與方法 P.71 第四節 實驗結果 P.78 第五節 討論 P.84 第六節 參考文獻 P.87 第七節 附圖及說明 P.91 結語 P.108 附錄: 已發表之論文 (Publication list) P.109 | |
dc.language.iso | en | |
dc.title | 結締組織生長因子於人類大腸直腸癌之角色研究 | zh_TW |
dc.title | Connective Tissue Growth Factor and Its Role in Colorectal Cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 鄭安理,王朝鐘,林明燦,莊?恩,翁一鳴 | |
dc.subject.keyword | 結締組織生長因子,大腸直腸癌, | zh_TW |
dc.subject.keyword | Connective Tissue Growth Factor,Colorectal Cancer, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。