Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33333
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor潘建源(Chien-Yuan Pan)
dc.contributor.authorYong-Cyuan Chenen
dc.contributor.author陳勇全zh_TW
dc.date.accessioned2021-06-13T04:35:07Z-
dc.date.available2011-07-26
dc.date.copyright2006-07-26
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citationREFERENCES
Cantrell, A. R., and Catterall, W. A. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2, 397-407.
Cantrell, A. R., Tibbs, V. C., Yu, F. H., Murphy, B. J., Sharp, E. M., Qu, Y., Catterall, W. A., and Scheuer, T. (2002). Molecular mechanism of convergent regulation of brain Na(+) channels by protein kinase C and protein kinase A anchored to AKAP-15. Mol Cell Neurosci 21, 63-80.
Catterall, W. A., Goldin, A. L., and Waxman, S. G. (2005). International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57, 397-409.
Chow, H. H., Hakim, I. A., Vining, D. R., Crowell, J. A., Ranger-Moore, J., Chew, W. M., Celaya, C. A., Rodney, S. R., Hara, Y., and Alberts, D. S. (2005). Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 11, 4627-4633.
Crespy, V., and Williamson, G. (2004). A review of the health effects of green tea catechins in in vivo animal models. J Nutr 134, 3431S-3440S.
Debanne, D. (2004). Information processing in the axon. Nat Rev Neurosci 5, 304-316.
Endoh, M. (2004). A Na+ channel agonist: a potential cardiotonic agent with a novel mechanism? Br J Pharmacol 143, 663-665.
Frick, A., and Johnston, D. (2005). Plasticity of dendritic excitability. J Neurobiol 64, 100-115.
Fujimura, Y., Yamada, K., and Tachibana, H. (2005). A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. Biochem Biophys Res Commun 336, 674-681.
Giuliodori, M. J., and Zuccolilli, G. (2004). Postsynaptic potential summation and action potential initiation: function following form. Adv Physiol Educ 28, 79-80.
Goldin, A. L. (2001). Resurgence of sodium channel research. Annu Rev Physiol 63, 871-894.
Goldin, A. L. (2003). Mechanisms of sodium channel inactivation. Curr Opin Neurobiol 13, 284-290.
Khan, N., Afaq, F., Saleem, M., Ahmad, N., and Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 66, 2500-2505.
Ko, S. H., Lenkowski, P. W., Lee, H. C., Mounsey, J. P., and Patel, M. K. (2005). Modulation of Na(v)1.5 by beta1-- and beta3-subunit co-expression in mammalian cells. Pflugers Arch 449, 403-412.
Kotani, A., Miyashita, N., and Kusu, F. (2003). Determination of catechins in human plasma after commercial canned green tea ingestion by high-performance liquid chromatography with electrochemical detection using a microbore column. J Chromatogr B Analyt Technol Biomed Life Sci 788, 269-275.
Lee, S. Y., Lee, J. W., Lee, H., Yoo, H. S., Yun, Y. P., Oh, K. W., Ha, T. Y., and Hong, J. T. (2005). Inhibitory effect of green tea extract on beta-amyloid-induced PC12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Brain Res Mol Brain Res 140, 45-54.
Magee, J. C. (2000). Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1, 181-190.
Magee, J. C., and Johnston, D. (2005). Plasticity of dendritic function. Curr Opin Neurobiol 15, 334-342.
Rogawski, M. A., and Loscher, W. (2004). The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5, 553-564.
Spampanato, J., Kearney, J. A., de Haan, G., McEwen, D. P., Escayg, A., Aradi, I., MacDonald, B. T., Levin, S. I., Soltesz, I., Benna, P., et al. (2004). A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction. J Neurosci 24, 10022-10034.
Steinlein, O. K. (2004). Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5, 400-408.
Stuart, G., Spruston, N., Sakmann, B., and Hausser, M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20, 125-131.
Trimmer, J. S., and Rhodes, K. J. (2004). Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66, 477-519.
Ulbricht, W. (2005). Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85, 1271-1301.
Waters, J., Schaefer, A., and Sakmann, B. (2005). Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87, 145-170.
Xia, J., Song, X., Bi, Z., Chu, W., and Wan, Y. (2005). UV-induced NF-kappaB activation and expression of IL-6 is attenuated by (-)-epigallocatechin-3-gallate in cultured human keratinocytes in vitro. Int J Mol Med 16, 943-950.
Yang, C. S., Maliakal, P., and Meng, X. (2002). Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42, 25-54.
Yang, C. S., Sang, S., Lambert, J. D., Hou, Z., Ju, J., and Lu, G. (2006). Possible mechanisms of the cancer-preventive activities of green tea. Mol Nutr Food Res 50, 170-175.

Zaveri, N. T. (2006). Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 78, 2073-2080.
Zhao, B. (2005). Natural antioxidants for neurodegenerative diseases. Mol Neurobiol
31, 283-293.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33333-
dc.description.abstract從綠茶中萃取出來的多酚化合物主要有四種成份:(–)-epigallocatechin gallate
(EGCG), (–)-epigallocatechin (EGC), (–)-epicatechin gallate (ECG), and
(–)-epicatechin (EC)。這些多酚已經被證實能夠抑制癌細胞的生長,防止神經退
化性疾病的形成,甚至能減少許多疾病的產生風險,像是中風、肥胖、心血管疾
病和老化。為了探討綠茶多酚對初級培養大鼠胚胎神經細胞的興奮性質有何影
響,我們利用全細胞膜片箝制技術去記錄離子通道電流和動作電位。研究結果顯
示ECG 減慢了電壓調控型鈉離子通道的不活化速率,而EC50 為12.88 ± 0.73
μM,同時此反應是可逆轉的;然而EGCG 卻沒有同樣的作用。鈉離子通道的不
活化恆穩態曲線也被ECG從-41.67 ± 0.08 毫伏特向負極移動到 -45.15 ± 0.05 毫
伏特。另外鈉離子通道從關閉狀態的恢復速率時間常數也從3.91 ± 0.08 毫秒延
長到 7.74 ± 0.43 毫秒。利用全細胞膜電流箝制技術記錄動作電位,ECG 會將電
作電位的強度和半寬分別從原先的96.5 ± 0.5 毫伏特和3.17 ± 0.13 毫秒增加到
103.9 ± 0.3 毫伏特和7.07 ± 0.12 毫秒,但是動作電位產生的頻率卻從16.4 ± 1.2
赫茲降到 6.6 ± 0.8 赫茲。這些研究結果顯示ECG 會經由影響鈉離子通道的性質
進一步改變神經細胞動作電位的產生,因而改變神經細胞的興奮性質。
zh_TW
dc.description.abstractABSTRACT
Polyphenols extracted from green tea (Camellia sinensis) is composed of four
major chemicals: (–)-epigallocatechin gallate (EGCG), (–)-epigallocatechin (EGC),
(–)-epicatechin gallate (ECG), and (–)-epicatechin (EC). These polyphenols have been
shown to inhibit the growth of tumor cells, prevent neurodegenerative diseases, and
reduce the risk of a series of illnesses, such as stroke, obesity, cardiovascular diseases,
and aging. To study the effects of polyophenols on the excitability of primary cultured
rat embryonic cortical neurons, whole-cell patch-clamp recording was used to monitor
the ionic currents and action potential firing. The result showed that ECG reversibly
slowed the inactivation of voltage-gated sodium channels with an EC50 of 12.88
± 0.73 μM; however, EGCG did not have any effect on Na+ current. The steady-state
inactivation of Na+ channel was negatively shifted from -41.67 ± 0.08 to -45.15 ±
0.05 mV and the time constant required for the recovery of Na+ channel to close state
was prolonged from 3.91 ± 0.08 to 7.74 ± 0.43 ms by ECG. When action potentials
were elicited under current clamp mode, the amplitude and half-width were increased
from 96.5 ± 0.5 to 103.9 ± 0.3 mV and 3.17 ± 0.13 to 7.07 ± 0.12 ms, respectively;
but frequency was decreased from 16.4 ± 1.2 to 6.6 ± 0.8 Hz. The results suggest that
ECG may modulate excitability of neurons through altering sodium channels.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:35:07Z (GMT). No. of bitstreams: 1
ntu-95-R93b41009-1.pdf: 838201 bytes, checksum: ce044a0e4706589f579fa361ecb58846 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsCONTENTS
Ⅰ. ABSTRACTS
Ⅰ.1 Chinese abstract………………………………………………………………1
Ⅰ.2 English abstract……………………………………………………………….2
Ⅱ. INTRODUCTION
Ⅱ.1 Benefits of green tea polyphenols……………………………………………3
Ⅱ.2 Inactivation of voltage-gated sodium channel…………………………….....4
Ⅱ.3 Action potential in excitable cell......................................................................5
Ⅱ.4 Our aims………………………………………………...................................6
Ⅲ. METHODS AND MATERIALS
Ⅲ.1 Solution and chemicals……………………………………………………....7
Ⅲ.2 Reagents……………………………………………………………………..7
Ⅲ.3 Primary neuronal cell culture..........................................................................8
Ⅲ.4 Electrophysiology...………………………………………………………….8
Ⅲ.5 Date analysis…………………………………………………………………9
Ⅳ. RESULTS
Ⅳ.1 ECG slows inactivation of VGSC……………………..................................10
Ⅳ.2 Cadmium blocks slowed inactivation of VGSC by ECG…………………...11
Ⅳ.3 Slowed inactivation of VGSC by ECG doesn’t require calcium influx…….11
Ⅳ.4 ECG suppresses steady-state inactivation curve ……………………..…….11
Ⅳ.5 ECG slows recovery rate from inactivation………………………………...12
Ⅳ.6 ECG alters frequency, amplitude, half-width of action potential…………...12
Ⅳ.7 ECG modulates action potential pattern of neurons according to their intrinsic firing frequency…………………………………………………………13
Ⅴ. DISCUSSION……………………………………………………………………14
Ⅵ. REFERENCE…………………………………………………………………...17
Ⅶ. Scheme…………………………………………………………………………...22
Ⅷ. Table………………………………………...……………………………………23
Ⅸ. Figures…………………………………………………………………………...24
dc.language.isoen
dc.title綠茶萃取物對初級培養大鼠胚胎神經細胞興奮性質的影響zh_TW
dc.titleEffects of Green Tea Extracts on the Excitability of Primary Cultured Rat Embryonic Neuronen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee閔明源(Ming-Yuan Min),邱麗珠(Lih-Chu Chiou),湯志永(Chih-Yung Tang)
dc.subject.keyword綠茶,神經細胞,鈉離子通道,zh_TW
dc.subject.keywordgreen tea,neuron,sodium channel,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2006-07-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:動物學研究所

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
818.56 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved