請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝 | |
| dc.contributor.author | I-Ling Shih | en |
| dc.contributor.author | 施宜伶 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:34:52Z | - |
| dc.date.available | 2006-07-24 | |
| dc.date.copyright | 2006-07-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-19 | |
| dc.identifier.citation | 1. A.P. Croft, S.A. Przyborski. Mesenchymal stem cells from the bone marrow stroma: basic biology and potential for cell therapy. Curr Anaesth Crit Care. 2004(15) :410–17
2. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004 Jul-Sep;8(3):301-16 3. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Bone marrow stem cells regenerate infarcted myocardium. Nature. 2001 Apr;5(410):701-705 4. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145-7 5. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000 Feb;6(2):88-95. 6. Frankel MS. In search of stem cell policy. Science. 2000 Feb 25;287(5457):1397. 7. Serakinci N, Keith WN. Therapeutic potential of adult stem cells. Eur J Cancer. 2006 Jun;42(9):1243-6. 8. Minguell , J.J., Erices A. and Conget P. Mesenchymal stem cells. Exp. Biol. Med.,2001 Jun(226):507-20. 9. Kadereit S. The Plasticity of Stem Cell Plasticity. ISSCR. April 2004 10. Frangioni JV, Hajjar RJ. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation. 2004 Nov 23;110(21):3378-83. 11. Chemaly ER, Yoneyama R, Frangioni JV, Hajjar RJ. Tracking stem cells in the cardiovascular system. Trends Cardiovasc. Med. 2005 Nov;15(8):297-302. Review. 12. Hardy J, Edinger M, Bachmann MH, Negrin RS, Fathman CG, Contag CH. Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol. 2001 Dec;29(12):1353-60. 13. Morawski AM, Lanza GA, Wickine SA. Target contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol. 2005 16:89-92 14. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3030-5. Epub 2002 Feb 26. 15. Delikatny EJ, Poptani H. MR techniques for in vivo molecular and cellular imaging. Radiol Clin North Am. 2005 Jan;43(1):205-20. 16. Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005 Jul;100(1):1-11. 17. Stephane M, Sebanstien V, Fabien G, Etienne D. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004 (14):2161-75 18. GM. Lanza, P. Winter, S. Caruthers, A. Schmeider, K. Crowder, A. Morawski1, H. Zhang, MJ. Scott1, SA. Wickline. Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr. Pharm. Biotechnol. 2004 (5): 495-507 19. LaConte, Leslie; Nitin, Nitin; Bao, Gang. Magnetic nanoparticle probes. Materialtoday.2005 May;8(5):32-8 20. Hengerer A, Grimm J. Molecular Magnetic Resonance Imaging. Reson. Imaging. 2005 21. Oyewumi MO, Mumper RJ. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy. Bioconjug Chem. 2002 Nov-Dec 13(6):1328-35. 22. Berry C.C. Possible exploitation of magnetic nanoparticle -cell interaction for Biomedical application. J. Mater. Chem. 2005(15):543-47 23. Caruthers SD, Winter PM, Wickline SA, Lanza GM. Targeted magnetic resonance imaging contrast agents. Methods Mol Med. 2006(124):387-400 24. Artemov D, Bhujwalla ZM, Bulte JW. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol. 2004 Dec;5(6):485-94. Review. 25. Lanzkaron SM, Collector MI, Sharkis SJ. Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood. 1999(93):1916-21 26. Dominik W, Victor D. Koechli, Borut M. How does MRI work ? : an introduction to the physics and function of magnetic resonance imaging. 2003 [ISBN 3540440941 ] 27. Allen M. Delivery and activation of contrast agents for magnetic resonance imaging. 2004 28. Hashemi RH, Bradley WG. Lisanti CJ. MRI : the basics. 2004 [ ISBN 0781741572] 29. Okuhata, Y. Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev. 1999 April 5; 37(1-3):121-137 30. Bottrill M, Kwok L, Long NJ. Lanthanides in magnetic resonance imaging. Chem Soc Rev. 2006 Jun;35(6):557-71. 31. 蘇富湖,聚二甲基矽氧高分子膠體溶液之研究:NMR顯影劑、NMR 訊號及流變性質等探討,國立中央大學化學工程研究所博士論文,民國90年 32. 何國祥、王毅翔,磁振造影劑藥理學即臨床應用,2002 33. 李潔如、牟中原,微胞、微乳液的形成,科學月刊第二十五卷第十期.1994 34. 王鳳英,界面活性劑的原理與應用,1986 35. Schulman JH, Stoeckenius W, Prince LM. Mechanism of formation and structure of microemulsions by electron microscopy. J. Phys. Chem. 1959(63):1677–80 36. Elisabeth H. Javazon, Kirstin J. Beggs, and Alan W. Flake. Mesenchymal stem cells: Paradoxes of passaging. Exp Hematol. 2004(32):414–425 37. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002 Aug;30(8):879-86. 38. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol. 2006;(174):249-82. 39. Minguell , J.J., Erices A. and Conget P. Mesenchymal stem cells. Exp. Biol. Med.,2001 Jun(226):507-20. 40. Tilcock C, Unger E, Cullis P, MacDougall P. Liposomal Gd-DTPA: preparation and characterization of relaxivity. Radiology. 1989 171:77-80 41. Oyewumi MO, Mumper RJ. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy. Bioconjug Chem. 2002 Nov-Dec 13(6):1328-35. 42. Willem J. M. Mulder, Gustav J. Strijkers, Geralda A. F. van Tilborg, Arjan W. Griffioen, Klaas N. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19:142–164 43. Lockman R, Joanna M, Mumper J, Allen D. Nanoparticle surface charge alter blood-brain barrier integrity and permeability. J. of Drug. Targeting. 2004(12):635-41 44. Roche. Cell proliferation reagent WST-1 protocal, 2005 45. Promega. CytoTox 96® non-radioactive cytotoxicity Assay protocol, 2006 46. 陳家全、李家維、楊瑞森,生物電子顯微鏡學,1991[ISBN 957-00-0152-6] 47. 許家晴,Characteristics of Urine Arsenic Species After Eating Organic Arsenic-Containing Seafood. 2004 48. Brasch R.C, New directions in the development of MR imaging contrast media. Radiology,1992(183):1-11 49. Huang DM, Hung Y, Ko BS, Hsu SH,Chen WH, Chien CL,Tsai CP, Kuo CT,Kang JC,Yang CS, Mou CY, Che YC. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J. 2005 Dec;19(14):2014-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33328 | - |
| dc.description.abstract | 幹細胞可遷移(migration)至器官損傷處進行修復,並因其自我更新(self-renewing)及分化(differentiation)的潛力而備受矚目,成為再生醫學中細胞治療(cell-based therapy)的熱門選擇。目前在幹細胞治療上已有許多成功的案例,然而其功能及作用機制上仍需更進一步的了解,所以追蹤治療中的幹細胞則成為相當重要的事。
本研究選用核磁共振(Magnetic Resonance Imaging, MRI)為造影工具,主要是由於MRI是非侵入式的檢查及擁有優良的3D影像解像能力。並以臨床上常使用的增影劑Gd合成奈米微粒,來標定幹細胞達到追蹤的目的。並希望在未來可以經由此方式追蹤幹細胞,研究其在細胞治療中的角色以及作用機制。 在材料製備上是用氯化釓(Gadolinium Chloride)螯合3,4-己二酮 (3,4-Hexanedione)而成已二酮釓(GdH),並藉由水包油型微乳化的方法(oil-in-water micro emulsion)製備出疏水性的GdH奈米微粒。再將GdH奈米微粒與幹細胞共同培養,細胞與奈米微粒接觸之後,以胞噬作用將GdH奈米微粒攝入胞內,希望藉由GdH奈米微粒的疏水性質,加強其進入細胞的機率。並利用MRI進行造影,偵測出GdH奈米微粒標定之幹細胞影像。 實驗結果顯示,我們以成功製備出100 nm 左右的GdH奈米微粒。300μg/mL濃度以下的GdH奈米微粒具有良好生物相容性,此濃度對照MRI影像,在200μg/mL濃度即有影像增強的效果,且影像增強能力比市售的Gd-DTPA更好。以TEM證實GdH奈米微粒可藉胞噬作用標定在幹細胞上,且由ICP-MS測出相同培養時間下,相較於Gd-DTPA,GdH有較好的標定能力。在細胞的MRI能夠偵測的到訊號,再配合幹細胞表面抗原的鑑定,證實幹細胞在標定上GdH奈米微粒之後,仍保有其免疫特徵。因此GdH奈米微粒應是一可行的幹細胞追蹤劑。 | zh_TW |
| dc.description.abstract | Stems cells are multipotent cells which are capable of self-renewing and differetiating into multipotent cell lineages. The therapeutic application of stem cells in many diseases has been widely studied in the past few years. However, the actual function and movement of stem cells after injection into human body remains unknown. In order to determine the function and movement of therapeutic stem cells, it is crucial to develop a technique to trace these therapeutic stem cells.
MRI is the most utilized modality for tracking stem cells in vivo because of its safety and 3-dimensional capabilities. Gadolinium is one of the most effective MRI contrast agent in clinical. The purpose of this study is to synthesize Gd nanoparticles, which can permeate cell membrane for labeling the cells as a cell tracker. Gadolinium hexanedione (GdH), which was synthesized by complexion of Gd3+ with 3,4-hexanedione, was used as the nanoparticle matrix. By the combination of GdH matrix and emulsifying wax, GdH nanoparticles (GdH-NPs) were obtained from oil-in-water microemulsion technique. The stem cells were labeled by culture with hydrophobic GdH-NPs and detected by MRI. From the result of this study, the size of synthesized particles was about 100 nm. GdH-NPs were biocompatible when the concentration was under 300μg/ml. Moreover, GdH-NPs had greater ability of image enhancement than the commercialized Gd-DTPA. The TEM image of labeled stem cells showed that GdH-NPs was accumulated in the cells by endocytic pathway. The accumulation behavior of GdH-NPs and Gd-DTPA were analyzed by ICP-MS and GdH-NPS showed a better labeling ability than Gd-DTPA. Labeled stem cells showed better signal in the result to cellular MRI. In order to evaluate possible adverse effect of GdH-NPs, we examined the immunophenotypes of labeled cells and the immunophenotypes of stem cells labeled with GdHNPs showed no difference with control group. In this study, GdH NPs are synthesized with a nano-scale size and show a good biocompatibility. In conclusion, GdH-NP has a great potential as a stem cell tracker in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:34:52Z (GMT). No. of bitstreams: 1 ntu-95-R93548049-1.pdf: 1905690 bytes, checksum: cf3c3b33d4d078e6f71900d0b28d75a4 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………...I
英文摘要………...…………………………………………………III 目錄…………………………………………………………………... V 圖目錄………………………………………………………………..IX 表目錄………………………………………………………………...XII 第一章 簡介 1-1 前言…………………………………………………………1 1-2 幹細胞……………………………………………………….1 1-3 幹細胞追蹤技術…………………………………………….4 1-4 磁性奈米微粒……………………………………………….5 1-5 磁性奈米微粒標定細胞的方法…………………………….8 1-6 研究目的…………………………………………………….9 第二章 基本理論 2-1 MRI原理………………………………………………….…10 2-2 MRI 顯影劑………………………………………………...13 2-3微乳化系統……………………………………………….…16 2-4間葉幹細胞之分離與鑑定………………………………….20 第三章 實驗方法 3-1 實驗儀器……………………………………………………23 3-2 實驗藥品……………………………………………………24 3-3 實驗流程與方法……………………………………………26 3-4 GdH 奈米微粒的製備……………………………………...28 3-4-1 GdH合成方法……………………………………….28 3-4-2 微乳化法製備GdH奈米微粒………………………31 3-5 GdH 奈米微粒分析………………………………………...33 3-5-1 粒徑分析 …………………………………………..33 3-5-2穿透式電子顯微鏡TEM……………………………33 3-5-3 掃描式電子顯微鏡SEM……………………………34 3-5-4 X射線能量散佈分析儀EDS………………………..34 3-5-5磁振造影 MRI………………………………………35 3-6骨髓間葉幹細胞培養……………………………………….. 36 3-6-1骨髓的取得…………………………………………..37 3-6-2 由骨髓分離間葉幹細胞…………………………….37 3-6-3 人類間葉幹細胞培養……………………………….38 3-7 生物相容性測試……………………………………………39 3-7-1 WST-1細胞增生及活性測試……………………….39 3-7-2 LDH 細胞毒性測試………………………………...40 3-8 GdH奈米微粒標定幹細胞之TEM…………………………42 3-9 感應耦合電漿質譜儀定量…………………………………44 3-10核磁共振細胞影像………………………………………..45 3-11 流式細胞儀鑑定幹細胞…………………………………..46 第四章 結果與討論 4-1 材料分析……………………………………………………49 4-1-1 粒徑及界面電位分析……………………………….49 4-1-2 穿透式電子顯微鏡TEM…………………………...51 4-1-3 掃描式電子顯微鏡 SEM…………………………..52 4-1-4 X光射線能量散佈分析儀EDS……………………53 4-1-5 MRI 影像分析………………………………………55 4-2 primary幹細胞培養…………………………………………57 4-3 生物相容性測試……………………………………………59 4-3-1 細胞增生 WST-1測試……………………………..59 4-3-2 細胞毒性LDH測試………………………………..61 4-4 GdH奈米微粒標定間葉幹細胞……………………………63 4-4-1 穿透式電子顯微鏡………………………………….63 4-4-2 感應耦合電漿質譜儀定量分析…………………….65 4-5 MRI細胞顯影……………………………………………….66 4-6流式細胞儀間葉幹細胞鑑定……………………………….67 第五章 結論………………………………………………………69 參考文獻………………………………………………………………70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 釓 | zh_TW |
| dc.subject | 奈米微粒 | zh_TW |
| dc.subject | 幹細胞 | zh_TW |
| dc.subject | 核磁共振 | zh_TW |
| dc.subject | 幹細胞追蹤劑 | zh_TW |
| dc.subject | MRI | en |
| dc.subject | cell tracker | en |
| dc.subject | mesenchymal stem cell | en |
| dc.subject | anoparticle | en |
| dc.subject | Gadolinium | en |
| dc.title | 製備己二銅釓奈米微粒當作細胞追蹤劑之研究 | zh_TW |
| dc.title | Preparation of Gadolinium Hexanedione Nanoparticles As A Stem Cell Tracker | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃煥常,陳耀昌,施庭芳,Leszek Stobinski(Leszek Stobinski) | |
| dc.subject.keyword | 釓,奈米微粒,幹細胞,核磁共振,幹細胞追蹤劑, | zh_TW |
| dc.subject.keyword | Gadolinium,anoparticle,mesenchymal stem cell,MRI,cell tracker, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
