請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33300
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振山 | |
dc.contributor.author | Jeng-Yu Chen | en |
dc.contributor.author | 陳政宇 | zh_TW |
dc.date.accessioned | 2021-06-13T04:33:32Z | - |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-19 | |
dc.identifier.citation | [1] Lighthill, M.J., 1973, On the Weis-Fogh mechanism of lift generation, Journal of Fluid Mechanics, 60, 1-17.
[2] Savage, S.B., Newman, B.G. and Womg, D. T.-H., 1979, The role of vortices and unsteady effects during the hovering flight of dragonflies, Journal of Experimental Biology, 83, 59-77. [3] Ellington, C.P., 1984, The aerodynamics of hovering insect flight, I: The quasi-steady analysis, Phil. Trans. R. Soc. Lond., B 305, 1-15. [4] Wilkin, P.J. and Williams, M.H, 1993, Comparison of the aerodynamic forces on a flying sphingid moth with those predicted by quasi-steady theory, Physiol. Zool. 66, 1015-1044. [5] Sane, S.P and Dickinson, M.H., 2002, The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, Journal of Experimental Biology, 205, 1087-1096. [6] Dalton, S., 1975, Borne on the Wind: The Extraordinary World of Insects in Flight. Reader’s Digest Press, New York. [7] Wootton, R.J., 1990, The Mechanical Design of Insect Wings. Scientific America, November, 114-120. [8] Daniel, T.L., and Combes S.A., 2002, Flexible wings and fins: bending by inertial or fluid-dynamic forces, Integr. Comp. Biol. 42, 1044-1049. [9] Combes, S.A. and Daniel, T.L., 2003a, Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta, J. Exp. Biol. 206, 2999-3006. [10] Wu, T.Y., 1971, Hydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional flexible plate at variable forward speeds in an inviscid fluid, Journal of Fluid Mechanics, 46, 337-355. [11] Daniel, T.L., 1987, Forward flapping flight from flexible fins, Canadian Journal of Zoology, 66, 630-638. [12] Combes, S.A. and Daniel T.L., 2001, Shape, flapping and flexion: wing and fin design for forward flight, J. Exp. Biol. 204, 2073-2085. [13] Smith, C.W., Herbert, R., Wootton, R.J. and Evans, K.E., 2000, The hind wing of the desert locust (Schistocerca gregaria Forskal). II. Mechanical properties and functioning of the membrane, J. Exp. Biol. 203, 2933-2943. [14] Herbert, R.C., Young, P.G., Smith, C.W., Wootton, R.J., and Evans, K.E., 2000, The hind wing of the desert locust (Schistocerca gregaria Forskal). III. A finite element analysis of a deployable structure, J. Exp. Biol. 203, 2945-2955. [15] Newman, D.J.S. and Wootton, R.J., 1986, An approach to the mechanics of pleating in dragonfly wings, J. Exp. Biol. 125, 361-372. [16] Ennos, A.R., 1988, The importance of torsion in the design of insect wings, J. Exp. Biol. 140, 137-160. [17] Wootton R.J., 1993, Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, Papilionoidea), J. Exp. Biol. 180, 105-117. [18] Wootton, R.J., Evans, K.E., Herbert, R. and Smith, C.W., 2000, The hind wing of the desert locust (Schistocerca gregaria Forskal). I. Functional morphology and mode of operation, J. Exp. Biol. 203, 2921-2931. [19] Combes, S.A. and Daniel, T.L., 2003a, Flexural stiffness in insect wings I. Scaling and the influence of wing venation, J. Exp. Biol. 206, 2979-2987. [20] Combes, S.A. and Daniel, T.L., 2003b, Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending J. Exp. Biol. 206, 2989-2997. [21] Den Hartog, J.P., 1956, Mechanical Vibrations, McGraw-Hill Book Company, Inc., New York. [22] Ewins, D.J., 2000, Modal testing : theory, practice, and application, Baldock, Hertfordshire, England ; Philadelphia, PA : Research Studies Press. [23] Chen, J.-S., Su, C.-P., and Chou, Y.-F., 1995, Modal Analysis of Miniature Structures, Proceeding of the 13th International Modal Analysis Conference, pp.969-975, Nashville, Tennessee, USA. [24] Lee J.-C. and Chou,Y.-F.,1991, Driven-Base Modal Parameter Estimation for Continuous Structures, Proceedings of the Florence Modal Analysis Conference, Florence, Italy, Sept. pp.789-796. [25] Rao, S. S., 1995, Mechanical Vibrations, 3rd edition, Addision-Wesley Publishing Company, Reading, Massachusetts. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33300 | - |
dc.description.abstract | 蜻蜓翅膀的自然頻率與振形量測
摘要 本文以基台激振法為理論基礎,進行對蜻蜓翅膀的模態分析。本實驗將蜻蜓翅膀從身體切下,以垂直翅膀平面方向的運動方式黏於激振器上,利用頻譜分析儀中的Swept Sine Measurements功能,使激振器在100Hz至500Hz的頻率下連續激振。再以光纖感測器探頭量取激振器與翅膀銀漆上的瞬間振動位移。藉著頻譜分析儀的運算,可以得到頻率響應函數,再由頻率響應函數可進一步得到蜻蜓翅膀的自然頻率與相對應的振動模態。 由本實驗結果得知當蜻蜓翅膀黏於激振器時,翅膀的基頻約在170Hz上下。而蜻蜓飛行時的拍翅頻率(27Hz)約為其基頻的16%,所以當蜻蜓拍翅時,翅膀本身的慣性力相較於彈性力是可忽略的。換句話說,蜻蜓飛行時翅膀的變形僅與外在的空氣動力有關,並可視為準靜態的變形。而相對應的振動模態則包含彎曲及扭轉的變形。 | zh_TW |
dc.description.abstract | On the Natural Frequencies and Mode Shapes of Dragonfly Wings
Abstract A base excitation modal testing technique is adopted to measure the natural frequencies and mode shapes of dragonfly wings severed from the torsos. The severed wings are glued onto the base of a shaker, which is capable of inducing translational motion in the lateral direction of the wing plane. Photonic probes are used to measure the displacement history of the shaker base and the painted spots of the wing simultaneously. The excitation frequency of the shaker is set to sweep from 100 to 500 Hz. A spectrum analyzer is responsible for calculating the frequency response functions, from which we can extract the natural frequencies and the associated mode shapes of the wing structure. Our experimental results show that the fundamental natural frequency of dragonfly wings is in the order of 170 Hz when it is clamped at the wing base. The average flapping frequency 27 Hz of dragonflies is about 16% of the fundamental frequency. Therefore, the inertial force of the wing is negligible compared to the elastic force when the dragonfly flaps its wings. In other words, the wing deformation is solely due to external aerodynamic force and can be considered as quasi-static. The corresponding mode shapes contain both bending and twisting deformations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:33:32Z (GMT). No. of bitstreams: 1 ntu-95-R93522520-1.pdf: 680564 bytes, checksum: 082b74506e573732f63aad601fceb197 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 第一章 導論 1
1-1 前言 1 1-2 研究動機 2 第二章 實驗設備 5 第三章 基台激振法理論 8 第四章 曲線嵌合軟體 12 第五章 懸臂銅片的動態測試 14 5-1 實驗動機 14 5-2 微小懸臂銅片的參數與邊界條件 14 5-3 銅片試驗及其結果 15 5-4有限元素分析及其結果 17 5-5 實驗結果與理論結果 17 5-6 實驗數據轉換 18 第六章 蜻蜓翅膀的動態試驗 20 6-1 實驗方法 20 6-2 曲線嵌合 23 6-3 實驗結果 24 第七章 蜻蜓翅膀動態試驗的結果討論 25 7-1 自然頻率 25 7-2 振動模態 26 7-3 振動模態討論 26 第八章 結論 28 參考文獻 31 附表目錄 34 附圖目錄 41 附錄一 56 附錄二 59 | |
dc.language.iso | zh-TW | |
dc.title | 蜻蜓翅膀的自然頻率與振形量測 | zh_TW |
dc.title | On the Natural Frequencies and Mode Shapes of Dragonfly Wings | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周元昉,盧中仁 | |
dc.subject.keyword | 自然頻率,振形,蜻蜓,翅膀, | zh_TW |
dc.subject.keyword | Natural Frequency,Mode Shape, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 664.61 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。