請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33299
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 翁祖輝(Tzuu-Huei Ueng) | |
dc.contributor.author | Wei-Hung Chan | en |
dc.contributor.author | 詹偉弘 | zh_TW |
dc.date.accessioned | 2021-06-13T04:33:29Z | - |
dc.date.available | 2006-08-03 | |
dc.date.copyright | 2006-08-03 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-20 | |
dc.identifier.citation | 參考文獻
Ainbinder E, Bergelson S, Pinkus R, Daniel V. Regulatory mechanisms involved in activator-protein-1 (AP-1)-mediated activation of glutathione-S-transferase gene expression by chemical agents. Eur J Biochem 1997; 243:49-57. Arras M, Autenried P, Rettich A, Spaeni D, Rulicke T. Optimization of intraperitoneal injection anesthesia in mice: drugs, dosages, adverse effects, and anesthesia depth. Comparative Medicine 2001; 51:443-56. Audibert G, Saunier CG, du Souich P. In vivo and in vitro effect of cimetidine, inflammation, and hypoxia on propofol kinetics. Drug Metab Dispos 1993; 21: 7-12. Bachmann K, Sanyal G, Potter J, Schiavone R, Loch J. In vivo evidence that theophylline is metabolized principally by CYP1A in rats. Pharmacology 1993; 47:1-7. Baker MT, Chadam MV, Ronnenberg WC. Inhibitory effects of propofol on cytochrome P450 activities in rat hepatic microsomes. Anesth Analg 1993; 76:817-21. Barbier O, Duran-Sandoval D, Pineda-Torra I, Kosykh V, Fruchart JC, Staels B. Peroxisome proliferator-activated receptor alpha induces hepatic expression of the human bile acid glucuronidating UDP-glucuronosyltransferase 2B4 enzyme. J Biol Chem 2003; 278:32852-60. Berman ML, Green OC, Calcerley RK, Smith NT, Eger II EI. Enzyme induction by enflurane in man. Anesthesiology 1976; 44:496-500. Boelsterli UA, Lanzotti A, Goldlin C, Oertle M. Identification of cytochrome P-450IIB1 as a cocaine-bioactivating isoform in rat hepatic microsomes and in cultured rat hepatocytes. Drug Metab Dispos 1992; 20:96-101. Bree MM, Feller I, Crossen G. Safety and tolerance of repeated anesthesia with CI 581 (ketamine) in monkeys. Anesth Analg 1967; 46:596-600. Brent JA, Rumack BH. Role of free radicals in toxic hepatic injury. II. Are free radicals the cause of toxin-induced liver injury? Clin Toxicol 1993; 31:173-196. Brown Jr. BR, Sagalyn AM. Hepatic microsomal enzyme induction by inhalation anesthetics: mechanism in the rat. Anesthesiology 1974; 40:152-61. Bryson HM, Fulton BR, Faulds D. Propofol: an update of its use in anaesthesia and conscious sedation. Drugs 1995; 50:513-59. Burke M, Mayer RT. Ethoxyresorufin: direct fluorimetric assay of microsomal O-dealkylation which is preferentially induced by 3-methylcholanthrene. Drug Metab Dispos 1974; 2:582-90. Byer DE, Gould AB Jr. Development of tolerance to ketamine in an infant undergoing repeated anesthesia. Anesthesiology 1981; 54:255-6. Chen CS, Lin JT, Goss KA, He YA, Halpert JR, Waxman DJ. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol Pharmacol 2004; 65:1278-85. Chen TL, Ueng TH, Chen SH, Lee PH, Fan SZ, Liu CC. Human cytochrome P450 mono-oxygenase system is suppressed by propofol. Br J Anaesth 1995; 74:558-62. Chen TL, Chen TG, Tai YT, Chang HC, Chen RM, Lin CJ, Ueng TH. Propofol inhibits renal cytochrome P450 activity and enflurane defluorination in vitro in hamsters. Can J Anaesth 2000; 47:680-6. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162:156-9. Coffman BL, Rios GR, Tephly TR. Purification and properties of two rat liver phenobarbital-inducible UDP-glucuronosyltransferases that catalyze the glucuronidation of opioids. Drug Metab Dispos 1996; 24: 329-33. Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 2001; 94: 110-9. Corssen G, Miyasaka M, Domino EF. Changing concepts in pain control during surgery: Dissociative anesthesia with CI-581. Anesth Analg 1975; 54:746-59. Cronin MM, Bousfield JD, Hewett EB, McLellan I, Boulton TB. Ketamine anaesthesia for radiotherapy in small children. Anaesthesia 1972; 27:135-42. Diehl MA. Cytokine regulation of liver injury and repair. Immunol Rev 2000; 174:160-71. Dorazil-Dudzik M, Mika J, Schafer MK, Li Y, Obara I, Wordliczek J, Przewlocka B. The effects of local pentoxifylline and propentofylline treatment on formalin-induced pain and tumor necrosis factor-alpha messenger RNA levels in the inflamed tissue of the rat paw. Anesth Analg 2004; 98:1566-73. Ekins S, Vandenbranden M, Ring BJ, Gillespie JS, Yang TJ, Gelboin HV, Wrighton SA. Further characterization of the expression in liver and catalytic activity of CYP2B6. J Pharmacol Exp Ther 1998; 286: 1253-9. Ersek RA. Dissociative anesthesia for safety's sake: ketamine and diazepam--a 35-year personal experience. Plast Reconstr Surg 2004; 113:1955-9. Estabrook RW, Peterson J, Baron J, Hilderbrandt A. The spectrophotometric measurement of turbid suspensions of cytochromes associated with drug metabolism. Methods Pharmacol 1972; 2 303-50. Estabrook RW. The remarkable P450s: a historical overview of these versatile hemeprotein catalysts. FASEB J 1996; 10:202-4. Favetta P, Guitton J, Degoute CS, Daele VL, Boulieu R. High-performance liquid chromatography assay to detect hydroxylated and conjugate matabolites of propofol in human urine. J Chromatogr B 2000; 742: 25-35. Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods in Enzymology 1984; 105:114-21. Friedberg BL. Propofol ketamine anesthesia for cosmetic surgery in the office suite. Int Anesthesiol Clin 2003; 41:39-50. Gaillard Y, Pepin G. Evidence of polydrug use using hair analysis: a fatal case involving heroin, cocaine, cannabis, chloroform, thiopental and ketamine. J Forenics Sci 1998; 43:435-8. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 1987; 66: 1256-63. Gooderham NJ, Mannering GJ. Depression of the hepatic cytochrome P-450 monooxygenase system by treatment of mice with the antineoplastic agent 5-azacytidine. Cancer Res 1985; 45:1569-72. Goodwin B, Hodgson E, D'Costa DJ, Robertson GR, Liddle C. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 2002; 62:359-65. Gourie-Devi M, Cherian L, Shankar SK. Seizures in cats induced by ketamine hydrochloride anaesthesia -- a preliminary report. Indian J Med Res 1983; 77:525-28. Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet 1981; 6:89-105. Greenblatt DJ, Divoll M, Abernethy DR, Locniskar A, Shader RI. Pharmacokinetics of benzodiazepine hypnotics. Int Pharmacopsychiatry 1982; 17S:70-5. Greenlee WF, Poland A. An improved assay of 7-ethoxycoumarin O-deethylase activity: Induction of hepatic enzyme activity in C57BL/6J and DBA/2J mice by phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetra-chlorodibenzo-p-dioxin. J Pharmacol Exp Ther 1978; 205:596-605. Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact 1997; 106:161-82. Guengerich FP, Shimada T. Activation of procarcinogens by human cytochrome P450 enzymes. Mutation Res 1998; 400: 201-213. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39:1-17. Guengerich FP. Cytochromes P450, drugs, and diseases. Mol Interventions 2003; 3:194-204. Guitton J, Buronfosse T, Desage M, Flinois JP, Perdrix JP, Brazier JL, Beaune P. Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth 1998; 80: 788-95. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249:7130-9. Hamaoka N, Oda Y, Hase I, Mizutani K, Nakamoto T, Ishizaki T, Asada A. Propofol decreases the clearance of midazolam by inhibiting CYP3A4: an in vivo and in vitro study. Clin Pharmacol Ther 1999; 66:110-7. Haugen DA, Coon MJ. Properties of electrophoretically homogeneous phenobarbital-inducible and beta-naphthoflavone-inducible forms of liver microsomal cytochrome P-450. J Biol Chem 1976; 251:7929-39. Heuss LT, Inauen W. The dawning of a new sedative: propofol in gastrointestinal endoscopy. Digestion 2004; 69:20-6. Hijazi Y, Boulieu R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 2002; 30:853-8. Hirshman CA, Krieger W, Littlejohn G, Lee R, Julien R. Ketamine-aminophylline-induced decrease in seizure threshold. Anesthesiology 1982; 56:464-7. Hoen PA, Bijsterbosch MK, van Berkel TJ, Vermeulen NP, Commandeur JN. Midazolam is a phenobarbital-like cytochrome P450 inducer in rats. J Pharmacol Exp Ther 2001; 299: 921-7. Idvall J, Aronsen KF, Stenberg P. Tissue perfusion and distribution of cardiac output during ketamine anesthesia in normovolemic rats. Acta Anaesth Scand 1980; 24: 257-63. Imai Y, Ito A, Sato R. Evidence for biochemically different types of vesicles in the hepatic microsomal fraction. J Biochem 1966; 69:417-28. Ishii Y, Takami A, Tsuruda K, Kurogi A, Yamada H, Oguri K. Induction of two UDP-glucuronosyltransferase isoforms sensitive to phenobarbital that are involved in morphine glucuronidation: production of isoform-selective antipeptide antibodies toward UGT1.1r and UGT2B1. Drug Metab Dispos 1997; 25:163-7. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236:313-22. Jansen KL. A review of the nonmedical use of ketamine: use, users and consequences. J Psychoactive Drugs 2000; 32:419-33. Kanz MF, Dugas TR, Liu H, Santa Cruz V. Glutathione depletion exacerbates methylenedianiline toxicity to biliary epithelial cells and hepatocytes in rats. Toxicol Sci 2003; 74:447-5. Kawamoto T, Sueyoshi T, Zelko I, Moore,R, Washburn K, Negishi M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol 1999; 19:6318-22. Kharasch ED, Thummel KE. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology 1993; 79:795-807. Kazama T, Ikeda K, Morita K, Ikeda T, Kikura M, Sato S. Relation between initial blood distribution volume and propofol induction dose requirement. Anesthesiology 2001; 94: 205-10. Kim SG, Chung HC, Cho JY. Molecular mechanism for alkyl sulfide-modulated carbon tetrachloride-induced hepatotoxicity: the role of cytochrome P450 2E1, P450 2B and glutathione S-transferase expression. J Pharmacol Exp Ther 1996; 277:1058-66. Kloss MW, Rosen GM, Rauckman EJ. Cocaine-mediated hepatotoxicity. A critical review. Biochem Pharmacol 1984, 33:169-73. Knibbe CA, Koster VS, Deneer VH, Stuurman RM, Kuks PF, Lange R. Determination of propofol in low-volume samples by high-performance liquid chromatography with fluorescence detection. J Chromatogr B 1998; 706: 305-10. Kogan A, Efrat R, Katz J, Vidne BA. Propofol-ketamine mixture for anesthesia in pediatric patients undergoing cardiac catheterization. J Cardiothorac Vasc Anesth 2003; 17:691-3. Koppel C, Arndt I, Ibe K. Effects of enzyme induction, renal and cardiac function on ketamine plasma kinetics in patients with ketamine long-term analgosedation. Eur J Drug Metab Pharmacokinet 1990; 15: 259-63. Labroo RB, Thummel KE, Kunze KL, Podoll T, Trager WF, Kharasch ED. Catalytic role of cytochrome P4503A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 1995; 23:490-6. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680-5. Lauretti GR, Lima IC, Reis MP, Prado WA, Pereira NL. Oral ketamine and transdermal nitroglycerin as analgesic adjuvants to oral morphine therapy for cancer pain management. Anesthesiology 1999; 90:1528-33. Le Guellec C, Lacarelle B, Villard PH, Point H, Catalin J, Durand A. Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg 1995; 81: 855-61. Lewis DF. 57 varieties: the human cytochromes P450. Pharmacogenomics 2004; 5:305-18. Levy RH. Metabolic drug interactions. Lippincott Williams & Wilkins, 2000. Licata M, Pierini G, Popoli G. A fatal ketamine poisoning. J Forensic Sci 1994; 39:1314-20. Linde HW, Berman ML. Nonspecific stimulation of drug-metabolizing enzymes by inhalation anesthetic agents. Anesth Analg 1971; 50:656-67. Livingston A, Waterman AE. The development of tolerance to ketamine in rats and the significance of hepatic metabolism. Br J Pharmacol 1978; 64:63-69. Loch JM, Potter J, Bachmann KA. The influence of anesthetic agents on rat hepatic cytochromes P450 in vivo. Pharmacology 1995; 50:146-53. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193:265-75. Lubet RA, Mayer RT, Cameron JW, Nims RW, Burke MD, Wolf T, Guengerich PF. Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P450 by phenobarbital and other xenobiotics in the rats. Arch Biochem Biophys 1985; 238:43-8. MacClain CJ, Hill DB, Schmidt J, Diehl AM. Cytokines and alcoholic liver disease. Semin Liv Dis 1993; 13:170-82. Mackenzie PI, Hanninen O. A sensitive kinetic assay for UDP- glucuronosyltransferase using 1-naphthol as substrate. Anal Biochem 1980; 109:362-8. Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr., Koch P, Antonian L, Wagner G, Yu L, Parkinson A. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 2003; 31:421-31. Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer S A. Nuclear pregnane X receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 2002; 62:638-46. Marietta MP, White PF, Pudwill CR, Way WL, Trevor AJ. Biodisposition of ketamine in the rat: self-induction of metabolism. J Pharmacol Exp Ther 1976; 196:536-44. Marietta MP, Vore ME, Way WL, Trevor AJ. Characterization of ketamine induction of hepatic microsomal drug metabolism. Biochem Pharmacol 1977; 26:2451-3. Masters BSS, Williams CH Jr., Kamin H. The preparation and properties of microsomal TPNH-cytochrome c reductase from pig liver. Methods Enzymol 1967; 10:565-73. Meneguz A, Fortuna S, Lorenzini P, Volpe MT. Influence of urethane and ketamine on rat hepatic cytochrome P450 in vivo. Exp Toxicol Pathol 1999; 51:392-6. Mercadante S, Lodi F, Sapio M, Calligara M, Serretta R. Long-term ketamine subcutaneous continuous infusion in neuropathic cancer pain. J Pain Symptom Manage 1995; 10:564–68. Metz RP, Auyeung DJ, Kessler FK, Ritter JK. Involvement of hepatocyte nuclear factor 1 in the regulation of the UDP-glucuronosyltransferase 1A7 (UGT1A7) gene in rat hepatocytes. Mol Pharmacol 2000; 58:319-27. Meyer UA, Hoffmann K. Phenobarbital-mediated changes in gene expression in the liver. Drug Metab Rev 1999; 31:365-3. Moore NN, Bostwick JM. Ketamine dependence in anesthesia providers. Psychosomatics 1999, 40:356-59. Morris DL, Davila JC. Analysis of rat cytochrome P450 isoenzyme expression using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Biochem Pharmacol 1996; 52: 781-92. Murphy JL, Jr. Hypertension and pulmonary oedema associated with ketamine administration in a patient with a history of substance abuse. Can J Anaesth 1993; 40:160-4. Nanji AA, Zhao S, Sadrzadeh SM, Waxman DJ. Use of reverse transcription-polymerase chain reaction to evaluate in vivo cytokine gene expression in rats fed ethanol for long periods. Hepatology 1994; 19:1483-7. Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 1953; 55:416–21. Nebert DW, Gelboin HV. Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. I. Assay and properties of induced enzyme. J Biol Chem 1968; 243:6242-9. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002, 360:1155-62. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 2004; 279:23847-50. Nerurkar PV, Park SS, Thomas PE, Nims RW, Lubet RA. Methoxyresorufin and benzyloxyresorufin: substrates preferentially metabolized by cytochromes P4501A2 and 2B, respectively, in the rat and mouse. Biochem Pharmacol 1993; 46:933-43. Oda Y, Mizutani K, Hase I, Nakamoto T, Hamaoka N, Asada A. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Br J Anaesth 1999; 82:900-3. Oda Y, Hamaoka N, Hiroi T, Imaoka S, Hase I, Tanaka K, Funae Y, Ishizaki T, Asada A. Involvement of human liver cytochrome P4502B6 in the metabolism of propofol. Br J Clin Pharmacol 2001; 51: 281-5 Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotien nature. J Biol Chem 1964; 239: 2370-8. Oshima E, Tei K, Kayazawa H, Urabe N. Continuous subcutaneous injection of ketamine for cancer pain. Can J Anaesth 1990 37: 385-6. Oye I, Paulsen O, Maurset A. Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 1992; 260:1209-13. Pekoe GM, Smith DJ. The involvement of opiate and monoaminergic neuronal systems in the analgesic effects of ketamine. Pain 1982; 12:57-73. Pichard L, Fabre I, Fabre G, Domergue J, Aubert BS, Mourad G, Maurel P. Cyclosporin A drug interactions. Screening for inducers and inhibitors of cytochrome P450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and liver microsomes. Drug Metab Dispos 1990; 18:595-606. Phillips AH, Langdon RG. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Bio Chem 1962; 237:2652-60. Phillips IR, Shephard EA (Editors). Cytochrome P450 Protocols. Methods in Molecular Biology V.107. Humana Press, 1998. Phimmasone S, Kharasch ED. A pilot evaluation of alfentanil-induced miosis as a noninvasive probe for hepatic cytochrome P450 3A4 (CYP3A4) activity in humans. Clin Pharmacol Ther 2001; 70:505-17. Rane A, Liu Z, Henderson CJ, Wolf CR. Divergent regulation of cytochrome P450 enzymes by morphine and pethidine: a neuroendocrine mechanism? Mol Pharmacol 1995; 47:57-64. Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 1989; 36:186-97. Rice SA, Talcott RE. Effects of isoniazid treatment on selected hepatic mixed-function oxidases. Drug Metab Dispos 1979; 7:260-2. Robertson IG, Zeiger E, Goldstein JA. Specificity of rat liver cytochrome P-450 isozymes in the mutagenic activation of benzo[a]pyrene, aromatic amines and aflatoxin B1. Carcinogenesis 1983; 4:93-6. Rofael HZ, Abdel-Rahman MS. The role of ketamine on plasma cocaine pharmacokinetics in rat. Toxicol Lett 2002; 129:167-76. Rofael HZ, Abdel-Rahman MS. Reduction of tissue concentration of cocaine in rat by ketamine. J Toxicol Environ Health Part A 2003; 66:241-51. Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil. An update. Clin Pharmacokinet 1996; 31:275-92. Searle NR, Cote S, Taillefer J, Carrier M, Gagnon L, Roy M, Lussier D. Propofol or midazolam for sedation and early extubation following cardiac surgery. Can J Anaesth 1997; 44:629-35. Servin F, Desmonts JM, Haberer JP, Cockshott ID, Plummer GF, Farinotti R. Pharmacokinetics and protein binding of propofol in patients with cirrhosis. Anesthesiology 1988; 69: 887-91. Selim K, Kaplowitz N. Hepatotoxicity of psychotropic drugs. Hepatology 1999; 29:1347-51. Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K,. Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C-propofol. Xenobiotica 1988; 18:429-40. Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Knott S, Ruane RJ. Distribution in female rats of an anaesthetic intravenous dose of 14C-propofol. Xenobiotica 1991; 21: 1325-35. Sneyd JR, Simons PJ, Wright B. Use of proton nmr spectroscopy to measure propofol metabolites in the urine of the female Caucasian patient. Xenobiotica 1994; 24: 1021-8. Spivey WH, Euerle B. Neurologic complications of cocaine abuse. Ann Emerg Med 1990; 19:1422-8. Subramaniam K, Subramaniam B, Steinbrook RA. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 2004; 99:482-95. Sueyoshi T, Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 2001; 41: 123-43. Sugiyama T, Kubota Y, Shinozuka K, Yamada S, Yamada K, Umegaki K. Induction and recovery of hepatic drug metabolizing enzymes in rats treated with Ginkgo biloba extract. Food Chem Toxicol 2004; 42:953-7. Tahashi Y, Matsuzaki K, Date M, Yoshida K, Furukawa F, Sugano Y, Matsushita M, Himeno Y, Inagaki Y, Inoue K. Differential regulation of TGF-β signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 2002; 35:49-61. Taniai H, Hines IN, Bharwani S, Maloney RE, Nimura Y, Gao B, Flores SC, McCord JM, Grisham MB, Aw TY. Susceptibility of murine periportal hepatocytes to hypoxia-reoxygenation: role for NO and Kupffer cell-derived oxidants. Hepatology 2004; 39:1544-52. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350-4. Ueng TH, Ueng YF, Tsai JN, Chao IC, Chen TL, Park SS, Iwasaki M, Guengerich FP. Induction and inhibition of cytochrome P-450-dependent monooxygenases in hamster tissues by ethanol. Toxicology 1993; 81:145-54. Ulett GC, Ketheesan N, Hirst RG. Cytokine Gene Expression in Innately Susceptible BALB/c Mice and Relatively Resistant C57BL/6 Mice during Infection with Virulent Burkholderia pseudomallei Infect Immun 2000; 68: 2034-42. Upton RN, Ludbrook GL, Grant C, Martinez AM. Cardiac output is a determinant of the initial concentrations of propofol after short-infusion administration. Anesth Analg 1999; 89: 545–52. Vree TB, Baars AM, de Grood PM. High-performance liquid chromatographic determination and preliminary pharmacokinetics of propofol and its metabolites in human plasma and urine. J Chromatogr A 1987; 417: 458–64. Waxman DJ, Lapenson DP, Aoyama T, Gelboin HV, Gonzalez FJ, Korzekwa K. Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s. Arch Biochem Biophys 1991; 290:160-6. Wei P, Zhang J, Dowhan DH, Han Y, Moore DD. Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response. Pharmacogenomics J 2002; 2:117-26. White J, Ryan C. Pharmacological properties of ketamine. Drug Alcohol Rev 1996; 15:145-55. Woolf TF. (editor) Handbook of drug metabolism. Marcel Dekker, 1999. Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, Iga T. Involvement of CYP2B6 in N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 2001; 29:887-90. Yun CH, Shimada T, Guengerich FP. Roles of human liver cytochrome P4502C and 3A enzymes in the 3-hydroxylation of benzo(a)pyrene. Cancer Res 1992; 52:1868-74. Yun CH, Okerholm RA, Guengerich FP. Oxidation of the antihistaminic drug terfenadine in human liver microsomes. Role of cytochrome P450 3A(4) in N-deakylation and C-hydroxylation. Drug Metab Dispos 1993; 21:403-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33299 | - |
dc.description.abstract | 細胞色素P450(Cytochrome P450; CYP或P450)乃是生物體進行生物轉換的重要酵素系統,它主要存在於肝臟中。P450的活性會受到一些外來物質改變,進而對毒性物質的活化造成影響;P450活性之改變亦是許多藥物間交互作用的機轉所在。
氯胺酮(ketamine)是一種靜脈麻醉劑,具有強力止痛及催眠作用,目前仍常被用於人體或動物的麻醉當中。氯胺酮會引起幻覺,因此近來也逐漸成為藥物濫用者所經常使用的藥物。在臨床上曾報告過反覆給予氯胺酮會造成後來給予的氯胺酮作用時間減短,而此種急性耐藥性(acute tolerance)的產生,被認為與氯胺酮活化藥物代謝酵素有關。本實驗即是以大鼠為動物模式探討氯胺酮對藥物代謝的主要酵素P450的作用並探討所產生之毒理意義與藥物交互作用。 首先以腹腔注射方式給予雄性大鼠一天兩次40 mg/kg氯胺酮,連續四天,結果發現肝臟微粒體的ethoxycoumarin O-deethylation (ECOD)、ethoxyresorufin O-dealkylation (EROD)、methoxyresorufin O-dealkylation (MROD)及pentoxyresorufin O-dealkylation (PROD) 等P450酵素活性皆有上升現象。進一步做劑量效應試驗,發現以腹腔注射方式給予雄性大鼠一天兩次10、20、40、80 mg/kg ketamine,連續四天,PROD活性上升有極佳劑量效應關係。而腹腔注射方式給予雄性大鼠一天兩次80 mg/kg氯胺酮,連續四天,也會增加大鼠肝臟erythromycin N-demethylation (END)、aniline hydroxylation、P450總量、cytochrome b5以及NADPH-P450 reductase活性。其他酵素如glutathione S-transferase (GST) 以及UDP-glucuronosyltransferase (UGT) 活性也有顯著上升;至於肝臟glutathione peroxidase活性則無明顯變化。其中PROD、ECOD、MROD與END活性上升的現象在四天後恢復原狀,EROD、aniline hydroxylation、GST與UGT活性在四天後仍較控制組高。接下來以西方點墨法發現肝臟微粒體CYP2B1/2蛋白量在10、20、40、80 mg/kg氯胺酮處理後分別上升5、6、10、13倍,80 mg/kg氯胺酮處理後,CYP1A1/2, CYP2E1與CYP3A 1/2蛋白量均上升2倍。RT-PCR實驗則發現80 mg/kg氯胺酮處理後CYP2B1/2 mRNA上升1.7倍。上述實驗顯示氯胺酮可誘導數種大鼠肝臟細胞色素P450酵素,其中以CYP2B最為顯著。 在ketamine造成的藥物交互作用的方面,發現氯胺酮前處理會縮短 2,6-雙異丙烷酚 (propofol) 對大鼠的麻醉時間,此一現象可被CYP2B抑制劑orphenadrine所回復, 2,6-雙異丙烷酚血中濃度在氯胺酮前處理大鼠下降較快。在離體實驗中發現氯胺酮前處理過的大鼠其肝臟微粒體可加速 2,6-雙異丙烷酚代謝及其代謝產物4-hydroxypropofol的生成,此一現象亦可被orphenadrine所回復。因此氯胺酮可加速 2,6-雙異丙烷酚代謝並減低其麻醉效果,此一現象與氯胺酮誘導CYP2B有關。 在氯胺酮造成的毒性增強方面,發現氯胺酮可增強四氯化碳以及古柯鹼的動物肝毒性。CYP2B抑制劑orphenadrine可回復氯胺酮加強古柯鹼肝毒性;但無法回復氯胺酮增強四氯化碳肝毒性。以RT-PCR偵測細胞激素變化或以三氯化釓清除肝臟巨噬細胞均無法改變此一現象。因此氯胺酮誘導CYP2B是古柯鹼毒性增強的重要機轉;至於氯胺酮增強四氯化碳肝毒性的機轉則尚無決定性的結論。 總結來說,氯胺酮可誘導大鼠肝臟細胞色素P450,其中對CYP2B的誘導作用最強,其毒理意義主要包括會加速 2,6-雙異丙烷酚的代謝,減低 2,6-雙異丙烷酚的麻醉效果,另外也會加強古柯鹼引起的肝毒性。 | zh_TW |
dc.description.abstract | Cytochrome P450 (P450; CYP) plays a pivotal role in the biotransformation of a wide variety of xenobiotics. The activity of P450 is susceptible to induction or inhibition by numerous xenochemicals. Altered P450 activity is a common underlying mechanism of drug-drug interactions and can also affect the bioactivation of xenobiotic toxicity.
Ketamine is an intravenous anesthetic that can produce potent analgesic effect and hypnosis simultaneously. In addition, ketamine can cause a trance-like state of mind in humans and consequently has become an abused substance. The development of acute ketamine tolerance is suggested to result from P450 induction by the drug. The aim of the thesis is to investigate the inductive effect of ketamine on rat hepatic P450 and explore its toxicological implications. Firstly, intraperitoneal (ip) administration of 40 mg/kg ketamine to male Wistar rats twice daily for four days was found to increase the levels of hepatic microsomal ethoxycoumarin O-deethylation (ECOD), ethoxyresorufin O-dealkylation (EROD), methoxyresorufin O-dealkylation (MROD) and pentoxyresorufin O-dealkylation (PROD). Further experiments revealed a strong dose-responsive relationship between the dose of ketamine and the increase in PROD activity. The levels of hepatic microsomal erythromycin N-demethylation (END), aniline hydroxylation, P450 content, cytochrome b5 and NADPH-P450 reductase were also increased in rats treated with ketamine 80 mg/kg ip twice daily for our days. The increased levels of PROD, ECOD, MROD and END returned to the pre-induction levels four days after the last dose of ketamine administration. On the other hand, the increase in the activities of EROD and aniline hydroxylation remained higher than the control values four days after the last dose of ketamine administration. Protein blot analysis of liver microsomal proteins revealed that 10, 20, 40, 80 mg/kg ketamine induced CYP2B1/2 by 5-, 6-, 10- and 2-fold, respectively. The amount of CYP1A1/2, 2E1 and 3A proteins was increased by 2-fold after treatment of 80 mg/kg ketamine. The polymerase chain reaction analysis showed a 1.7 fold increase in CYP2B mRNA level after ketamine treatment. In regard to ketamine-related drug interactions, the propofol sleeping time was significantly reduced in ketamine-pretreated rats. The reduction could be effectively reversed by a CYP2B inhibitor orphenadrine. The whole-blood propofol concentration after intravenous infusion declined faster in ketamine-pretreated rats. In ex vivo experiments, the ability of hepatic microsomes to metabolize propofol was enhanced in ketamine-pretreated rats. The enhancement in propofol metabolism could be reversed by the addition of orphenadrine. Regarding the bioactivation of toxicants, the liver damage induced by cocaine or carbon tetrachloride (CCl4) was enhanced after ketamine pretreatment. Orphenadrine could effectively reverse the enhancement of cocaine-induced hepatotoxicity by ketamine but not in the case of CCl4. Neither the detection of inflammatory cytokines nor depletion of Kupffer cells by gadolinium chloride could provide a mechanistic explanation for the potentiation of CCl4 toxicity by ketamine. In conclusion, ketamine can induce several P450 proteins; where CYP2B is the most responsive isoform. CYP2B induction is the major mechanism of reduced anesthetic effect of propofol and enhanced propofol metabolism after ketamine treatment in rats. CYP2B induction also plays a principal role in the potentiation of cocaine-induced hepatotoxicity by ketamine. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:33:29Z (GMT). No. of bitstreams: 1 ntu-95-D89447003-1.pdf: 3056766 bytes, checksum: 191210f9e3b6668c9046b3d3b82d2301 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目 錄
中文摘要 ------------------------------------------------------------------------------------ 1 英文摘要 ------------------------------------------------------------------------------------ 3 第一章 序論 外來物質的代謝途徑與細胞色素P450的重要性 ---------------------------------- 5 細胞色素P450活性改變的毒理意義 ------------------------------------------------- 6 麻醉藥對P450的影響 ------------------------------------------------------------------- 7 靜脈麻醉藥物氯胺酮 --------------------------------------------------------------------- 8 氯胺酮與P450的相關研究 -------------------------------------------------------------- 9 靜脈麻醉藥Alfentanil --------------------------------------------------------------------- 10 研究目的 ------------------------------------------------------------------------------------ 11 第二章 研究方法 實驗動物與處理方式 --------------------------------------------------------------------- 12 肝臟微粒體製備與蛋白質濃度測量 --------------------------------------------------- 15 P450酵素活性試驗 ----------------------------------------------------------------------- 15 P450含量測定 ----------------------------------------------------------------------------- 17 NADPH-P450還原酶活性測定 --------------------------------------------------------- 17 麩胱甘肽轉移酶 (Glutathione S-Transferase; GST) 及尿苷二磷酸葡萄糖醛酸基轉移酶 (UDP-Glucuronosyltransferase; UGT) 活性試驗 ----------------------------- 17 麩胱甘肽總量 (Total Glutathione) 與麩胱甘肽過氧化酶 (Glutathione Peroxidase) 活性試驗 ------------------------------------------------------------------------------------ 18 凝膠電泳與免疫點墨法 ------------------------------------------------------------------ 18 大鼠肝臟RNA抽取 ----------------------------------------------------------------------- 19 反轉錄-聚合鏈反應 (Reverse Transcription - Polymerase Chain Reaction; RT-PCR) -------------------------------------------------------------------------------------------------- 19 2,6-雙異丙烷酚代謝離體試驗 ----------------------------------------------------------- 20 2,6-雙異丙烷酚麻醉時間試驗 (Propofol Sleeping Time) --------------------------- 21 2,6-雙異丙烷酚血中濃度偵測 ----------------------------------------------------------- 21 天門冬氨酸轉移酶、丙胺酸轉移酶與鹼性磷酸酶活性測試 --------------------- 22 肝臟組織病理切片檢查 ------------------------------------------------------------------ 22 肝臟切片2,3,5-Triphenyl Tetrazolium Chloride (TTC)染色 ------------------------ 22 統計分析 -------------------------------------------------------------------------------------23 第三章 結果 前驅實驗—Ketamine與Alfentanil對大鼠肝臟P450活性試驗的影響 --------- 24 Ketamine對大鼠肝臟P450活性的誘導作用:劑量—效應關係 ----------------- 25 Ketamine對大鼠肝臟P450活性的誘導作用:回復性實驗 ----------------------- 27 Ketamine對大鼠肝臟麩胱甘肽轉移酶 (Glutathione S-Transferase) 及尿苷二磷酸葡萄糖醛酸基轉移酶 (UDP-Glucuronosyltransferase) 活性之作用 ----------------- 29 Ketamine對大鼠肝臟微粒體代謝propofol之影響 ---------------------------------- 30 Ketamine對propofol麻醉時效之影響 ------------------------------------------------- 32 Ketamine對大鼠血中propofol濃度之影響 ------------------------------------------- 33 Ketamine對四氯化碳 (CCl4) 引發大鼠肝毒性之影響 ----------------------------- 34 Ketamine對古柯鹼 (cocaine) 引發小鼠急性致死率與肝毒性之影響 ----------- 38 第四章 討論 Ketamine對大鼠肝臟P450活性的誘導作用 ------------------------------------------ 44 Alfentanil對大鼠肝臟P450活性的誘導作用 ----------------------------------------- 46 Ketamine對大鼠肝臟麩胱甘肽轉移酶 (Glutathione S-Transferase) 及尿苷二磷酸葡萄糖醛酸基轉移酶 (UDP-Glucuronosyltransferase) 活性之誘導作用 ----------- 47 CYP2B誘導為ketamine減低propofol麻醉時效的主要機轉 --------------------- 49 Ketamine加強四氯化碳肝毒性之機轉探討 ------------------------------------------- 53 CYP2B誘導為ketamine加強古柯鹼肝毒性的主要機轉 --------------------------- 54 結論 -------------------------------------------------------------------------------------------- 56 參考文獻 ------------------------------------------------------------------------------------ 58 圖 表 目 錄 Tables Table 1. The sequences of primers used in polymerase chain reaction analysis ------ 73 Table 2. The body weight, liver weight and liver/body weight ratio of control and ketamine-treated rats -------------------------------------------------------------------------- 74 Table 3. Effects of ketamine on hepatic monooxygenases activities in rats ----------- 75 Table 4. The body weight, liver weight and liver/body weight ratio of control and alfentanil-treated rats ------------------------------------------------------------------------- 76 Table 5. Effects of alfentanil on hepatic monooxygenases activities in rats ---------- 77 Table 6. Effect of different doses of ketamine on body and liver weights in rats ---- 79 Table 7. Dose-responsive effect of ketamine on rat hepatic ECOD and PROD activities ---------------------------------------------------------------------------------------- 80 Table 8. Effects of different doses of ketamine on hepatic monooxygenases activities in rats ------------------------------------------------------------------------------------------- 81 Table 9. Reversibility of inductive effect of ketamine on rat hepatic ECOD and PROD activities ---------------------------------------------------------------------------------------- 82 Table 10. Reversibility of inductive effects of ketamine on rat liver monooxygenases activities ---------------------------------------------------------------------------------------- 83 Table 11. Effect of ketamine on the activity of hepatic glutathione S-transferase and UDP-glucuronosyltransferase --------------------------------------------------------------- 84 Table 12. Reversibility of ketamine-induced rat hepatic glutathione S-transferase and UDP-glucuronosyltransferase activities --------------------------------------------------- 85 Table 13. Body and liver weights in rats treated with CCl4 and ketamine ------------ 86 Table 14. Effect of ketamine on cocaine-induced acute lethality in mice ------------- 87 Table 15. Body and liver weights in mice treated with cocaine and ketamine ----- 88 Figures Figure 1. A simplified diagram of P450-catalyzed metabolism pathway ----------- 89 Figure 2. The chemical structure of ketamine ------------------------------------------ 90 Figure 3. Pathways of ketamine metabolism in humans; thick dark arrows indicate the major pathway ---------------------------------------------------------------------------91 Figure 4. The chemical structures of two chemical inhibitors used in the present study ------------------------------------------------------------------------------------------ 92 Figure 5. Dose-response relationship of the effect of ketamine on pentoxyresorufin O-dealkylation (PROD) activity of rat liver microsomes ----------------------------- 93 Figure 6. Immunoblots of microsomal P-450 1A, 2B, 2E and 3A in livers from control and ketamine-treated rats --------------------------------------------------------- 94 Figure 7. Dose-response relationship of the effect of ketamine on CYP2B-immunoreactive proteins of rat liver microsomes analyzed by immunoblots ------------------------------------------------------------------------------------------------- 96 Figure 8. Dose-response relationship of the effect of ketamine on CYP1A-immunoreactive proteins of rat liver microsomes analyzed by immunoblots ------------------------------------------------------------------------------------------------- 97 Figure 9. Effect of ketamine treatment on CYP2B mRNA level in rats using RT-PCR analysis ---------------------------------------------------------------------------- 98 Figure 10. Reversibility of the effect of ketamine on pentoxyresorufin O-dealkylation (PROD) activity of rat liver microsomes ----------------------------- 99 Figure 11. Reversibility of the effect of ketamine on P-450 2B-immunoreactive proteins of rat liver microsomes analyzed by immunoblots ------------------------- 101 Figure 12. The metabolic pathway of propofol in humans --------------------------- 102 Figure 13. Enhanced propofol hydroxylation in microsomes from ketamine-pretreated rats by HPLC analysis ---------------------------------------------------------------------- 103 Figure 14. Reversal of enhanced propofol hydroxylation in ketamine-pretreated microsomes by the addition of P-450 2B inhibitor, orphenadrine -------------------- 105 Figure 15. Effect of ketamine and orphenadrine on (A) propofol-induced sleeping time and (B) liver microsomal PROD activity in rats ---------------------------------- 107 Figure 16. The effect of ketamine pretreatment on whole blood propofol concentration in rats ------------------------------------------------------------------------- 109 Figure 17. Effect of ketamine on CCl4-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in rats -------------------------------- 110 Figure 18. Histopathological examination of the effect of ketamine on CCl4-induced liver damage in rats ------------------------------------------------------------------------- 112 Figure 19. Effect of ketamine on low-dose CCl4-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in rats -- 113 Figure 20. Histopathological examination of the effect of ketamine on low-dose CCl4-induced liver damage in rats --------------------------------------------------------- 114 Figure 21. Effect of ketamine and orphenadrine, a P-450 2B inhibitor, on CCl4-induced serum aminotransferases activities --------------------------------------- 115 Figure 22. Histopathological examination of the effect of ketamine and orphenadrine on CCl4-induced Hepatotoxicity ----------------------------------------------------------- 117 Figure 23. 2,3,5-Triphenyltetrazolium chloride (TTC) staining of liver sections after CCl4, ketamine and orphenadrine treatment --------------------------------------------- 118 Figure 24. TNBT (2,2´,5,5´-Tetra(4-nitrophenyl)-3,3´-dimethoxy-4,4´-biphenylene)- 2H,2H´-ditetrazolium chloride ) staining of liver sections after CCl4, ketamine and orphenadrine treatment ---------------------------------------------------------------------- 119 Figure 25. Effect of ketamine on CCl4-induced alterations of hepatic cytokines analyzed by RT-PCR ------------------------------------------------------------------------ 120 Figure 26. Effect of ketamine and pentoxifylline (Pent) on CCl4-induced serum aminotransferases elevation in rats -------------------------------------------------------- 121 Figure 27. Effect of ketamine, CCl4 or orphenadrine on total hepatic glutathione content in rats -------------------------------------------------------------------------------- 123 Figure 28. Effect on hepatic PROD activity by ketamine and cocaine treatment in mice -------------------------------------------------------------------------------------------- 124 Figure 29. Effect of ketamine on cocaine-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in mice ---------------------- 125 Figure 30. Effect of ketamine on cocaine-induced liver damage in mice ------------ 127 Figure 31. Effect of ketamine and orphenadrine on cocaine-induced serum aminotransferases activities in mice -------------------------------------------------------128 Figure 32. Histopathological examination of the effect of ketamine and orphenadrine on cocaine-induced hepatotoxicity in mice ---------------------------------------------- 130 Figure 33. 2,3,5-Triphenyltetrazolium chloride (TTC) staining of liver sections after cocaine, ketamine and orphenadrine treatment in mice -------------------------------- 131 Figure 34. Effect of ketamine on cocaine-induced alteration in hepatic cytokines in mice analyzed by RT-PCR ----------------------------------------------------------------- 132 Figure 35. Effect of ketamine and gadolinium on cocaine-induced serum aminotransferases activities in mice ------------------------------------------------------ 133 Figure 36. Effect of ketamine and pentoxifylline (Pent) on cocaine-induced serum aminotransferases activities in mice ------------------------------------------------------ 135 Figure 37. 2,3,5-Triphenyltetrazolium chloride (TTC) staining of liver sections after cocaine, ketamine and pentoxifylline treatment in mice ------------------------------- 137 Figure 38. Effect of ketamine, cocaine or orphenadrine on total hepatic glutathione content in mice ------------------------------------------------------------------------------- 138 Figure 39. Working hypothesis of CYP2B induction by phenobarbital (PB) --------139 Figiure 40. The mechanism of bioactivation of carbon tetrachloride (CCl4) toxicity -------------------------------------------------------------------------------------------------- 140 Figure 41. The metabolic pathways of cocaine ------------------------------------------ 141 Figure 42. Summary of the present study ------------------------------------------------ 142 附錄 已發表論文 ----------------------------------------------------------------------------------144 | |
dc.language.iso | zh-TW | |
dc.title | 氯胺酮誘導大鼠肝臟細胞色素P450及其毒理意義 | zh_TW |
dc.title | Induction of Rat Hepatic Cytochrome P450 by Ketamine and Its Toxicological Implications | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉宗榮,黃金鼎,李德章,鍾邦柱,孫維仁 | |
dc.subject.keyword | 氯胺酮,細胞色素P450,藥物交互作用,2,6-雙異丙烷酚,肝毒性,古柯鹼,四氯化碳, | zh_TW |
dc.subject.keyword | Ketamine,cytochrome P450,drug interaction,propofol,hepatotoxicity,cocaine,carbon tetrachloride, | en |
dc.relation.page | 144 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。