請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33291完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | |
| dc.contributor.author | Chia-Sheng Liu | en |
| dc.contributor.author | 劉家聖 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:33:06Z | - |
| dc.date.available | 2007-07-21 | |
| dc.date.copyright | 2006-07-21 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-19 | |
| dc.identifier.citation | [1] Center of disease control and prevention http://www.cdc.gov/
[2] Amanda J. Haes and R. VanDuyne, A unified view of propagating and localized surface plasmon resonance biosensors, Analytical and Bioanalytical Chemistry, Vol.379 (2004) 920. [3] Filip Frederix, et al., Biosensing based on light absorption of nanoscaled gold and silver particles, Analytical Chemistry, Vol. 75, No. 24(2003) 6894. [4] Amanda J. Haes, et al., A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease, Nano Letters, Vol. 4, No. 6(2004) 1029. [5] Eliza Hutter and Janos H. Fendler, Exploitation of localized surface plasmon resonance, Advanced Materials, Vol.16, No. 19 (2004) 1685. [6] L. R. Hirsch, et al., A whole blood immunoassay using gold nanoshells, Analytical Chemistry, Vol. 75, No. 10 (2003) 2377. [7] Tatsuro Endo, et al., Localized surface plasmon resonance based optical biosensor using surface modified nanoparticles layer for label-free monitoring of antigen-antibody reaction, Science and Technology of Advanced Materials, Vol. 6 (2005) 491. [8] Tatsuro Endo, et al., Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor, Analytical Chemistry, Vol.77, No. 10 (2005) 6976. [9] S. J. Oldenburg, et al., Nanoengineering of optical resonance, Chemical Physics Letters, Vol, 288 (1998) 243 [10] Craig F. Bohren and Donald R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons, Inc, 1998 [11]http://www.shu.ac.uk/schools/sci/chem/tutorials/molspec/beers1.htm [12] Michael J. O”Brien, et al., A surface plamsmon resonance array biosensor based on spectroscopic imaging, Vol. 16 (2001) 97. [13] E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturforsch. 23A (1968) 2135. [14] Kuo-Ping Chen, Optical admittance loci design and chip fabrication of multilayer SPR bio-sensor device, Thesis, Institute of biomedical engineering, NTU, 2002. [15] P. N. Prasad, Nanophotonics, John Wiley & Sons, Inc., 2004. [16] C. Söennichsen, Plasmons in metal nanostructures, in physics. Hamburg, http://www.carsten-soennichsen.de/nano/CSoennichsenDiss.pdf, 2001. [17] Kaiser, Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides, Analytical Chemistry, Vol 34 (1970) 595 [18] 泉谷徹郎 著(高正雄 譯著), 光學玻璃, 復漢出版社, 1991 [19] US 6,537,749 B2 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33291 | - |
| dc.description.abstract | 由貴重金屬奈米顆粒特有之區域性表面電漿共振現象所引起的吸收光譜,對於比鄰環境的折射率變化十分敏銳,故已被應用在光學生物感測的領域上。 在本研究中,我們設計一種二氧化矽暨金奈米顆粒混合組成層,利用共價及化學鍵結,將二氧化矽奈米球、金奈米顆粒、玻璃基材組裝在一起。 在此元件的吸收光譜中,我們觀察到「雙波峰」的現象,並將之用在生物分子的感測上。
利用此元件測試不同濃度葡萄糖溶液可以模擬元件對於環境之折射率改變的檢測的狀況。目前可檢測到的最小溶液折射率變化,受限於折射率計的最低有效位數為 。 做為檢測抗原-抗體反應的生物感測器,我們利用已固定在元件表面的禽類流感病毒(表面帶有血球凝集素第五型的亞型)可以檢測到濃度為10 μg/ml 之針對血球凝集素第五型的抗體。 此種抗原-抗體專一性鍵結造成的吸收光譜劇烈變化在非專一性鍵結的實驗中是沒有量測到的。 此種利用區域性表面電漿共振原理的奈米顆粒層可以在任何透光的二氧化矽表面組成。 搭配高靈敏度的光感系統,此二氧化矽暨金奈米顆粒混合組成層有潛力成為超高靈敏度的可微小化生物感測工具。 | zh_TW |
| dc.description.abstract | The LSPR-induced absorption spectrum of noble metal nanoparticles are known for optical biosensing via its sensitivity toward environmental refraction index variation. To perform nanoparticles on substrate, we designed a heterogeneous assembly SiO2/Au nanoparticle layer using the covalent and chemical attachment between substrate, silica nanospheres, and gold nanoparticles. A “double-peak” absorption spectrum is observed while measuring the spectrum of this device, and is used as a tool for biomolecular sensing.
Glucose solutions of different concentrations were tested by the chip to simulate the detecting of refraction index change. The minimum refraction index change of solutions being detected is below but bounded by the detection limit of the refractometer ( ). As a biosensor for antigen-antibody reaction, 10 μg/ml anti-H5 can be detected by binding with the avian influenza virus (AIV H5) immobilized on our chip, This specific binding causes intense variation in the absorption spectrum, while nonspecific antibodies induced extremely weak variations. This LSPR based nanoparticles layer sensor can be assembled on any transparent silica substrates. With a photodetecting system with high resolution, the heterogeneous assembly SiO2/Au nanoparticle layer has the potential to provide an ultrahigh sensitive and minimizable biosensing tool. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:33:06Z (GMT). No. of bitstreams: 1 ntu-95-R93548043-1.pdf: 1146581 bytes, checksum: 920bf895f60160a868c1d5a46a0a0d3b (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of Contents iii List of Figures v List of Tables viii Chapter 1 Introduction and Motivations p.1 Chapter 2 Absorption and LSPR p.4 2.1 Extinction, scattering, and absorption p.4 2.2 Absorption and absorption spectrum p.7 2.3 Localized Surface Plasmon Resonance (LSPR) p.8 2.3.1 From planar to localized SPR p.8 2.3.2 LSPR and Absorption p.10 2.4 LSPR-induced absorption sensing method p.15 Chapter 3 Materials and Methods p.17 3.1 Flow chart p.17 3.2 Materials p.18 3.3 Instrumentation. p.18 3.4 Fabrication of the heterogeneous assembly SiO2/Au nanoparticle layer chip p.19 3.4.1 Surface modification of the silica nanoparticles (spheres) p.19 3.4.2 Confirmation of the modification p.20 3.4.3 Immobilization of the silica nanoparticle layer p.22 3.4.4 Immobilization of the gold nanoparticles p.23 3.5 Sample preparations p.25 3.5.1 AIV H5 and mouse anti-H5 p.25 3.5.2 Bulk spectra of the samples p.27 Chapter 4 Results and Discussions p.30 4.1 Characteristics p.30 4.1.1 SEM image p.31 4.1.2 Test in different environment p.32 4.2 Stability and Reproducibility p.34 4.2.1 Stability p.34 4.2.2 Reproducibility p.35 4.2.3 Discussion p.36 4.3 Sensing application: glucose solution p.38 4.3.1 Detecting refraction index change with nanoparticle layer chip p.38 4.3.2 Detecting small refraction index change p.41 4.3.3 Discussion p.43 4.4 Sensing application: AIV H5 and mouse anti-H5 p.43 4.4.1 Specific binding p.44 4.4.2 Reacting with nonspecific antibody p.46 4.4.3 Discussion p.47 Chapter 5 Conclusion p.51 References p.53 | |
| dc.language.iso | en | |
| dc.subject | 禽類流感病毒 | zh_TW |
| dc.subject | 局部表面電漿共振 | zh_TW |
| dc.subject | 吸收光譜 | zh_TW |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | Absorption spectrum | en |
| dc.subject | AIV | en |
| dc.subject | Nanoparticle | en |
| dc.subject | LSPR | en |
| dc.title | 利用二氧化矽及金奈米顆粒混合組成層的病毒體光學檢測 | zh_TW |
| dc.title | Heterogeneous Assembly of SiO2/Au Nanoparticle Layer for Optical based Virus Pathogen Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李世光,賴信志,林世明 | |
| dc.subject.keyword | 局部表面電漿共振,吸收光譜,奈米顆粒,禽類流感病毒, | zh_TW |
| dc.subject.keyword | LSPR,Absorption spectrum,Nanoparticle,AIV, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
