請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33289
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江衍偉(Yean-Woei Kiang) | |
dc.contributor.author | Shou-Yuan Ma | en |
dc.contributor.author | 馬碩遠 | zh_TW |
dc.date.accessioned | 2021-06-13T04:33:00Z | - |
dc.date.available | 2006-07-24 | |
dc.date.copyright | 2006-07-24 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-19 | |
dc.identifier.citation | [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059-2062, May 1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, no. 23, June 1987. [3] M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho , “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B, vol. 63, p. 081107, Feb. 2001. [4] K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, DM Tennant, AM Sergent, DL Sivco, AY Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser”, Appl. Phys. Lett., vol. 84, no. 21, pp. 4164-4166, May 2004. [5] W. J. Kim, J. D. O’Brien, “Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite element method,” J. Opt. Soc. Am. B, vol. 21, no. 2, pp. 289–295, Feb. 2004. [6] J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot and A. Tünnermann “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express , vol. 11, no. 22, pp. 2982-2990, Sep. 2003. [7] C. Kittel, Introduction to Solid State Physics, 8th edition, John Wiley & Sons, New York, 2005. [8] D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett., vol. 47, pp. 233−236, 1981. [9] R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, ”Photonic Bound States in Periodic Dielectric Materials,” Phys. Rev. B, vol. 44, p. 13772-13774, 1991. [10] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional Photonic Band-gap Defect Mode Laser,” Science vol. 284, pp. 1819-1821, 1999. [11] R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E, vol. 68, p. 026704, Aug. 2003. [12] L. Shen, A. Ye, and S. He, “Design of two dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev.B, vol. 68, p. 035109, 2003. [13] S. Kirkpatrick, CD Gelatt, Jr., and MP Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 5498, pp. 671-680, May 1983. [14] S. Guo, S. Albin, “Simple plane wave implementation method for photonic crystal calculations,” Opt. Express, vol. 11, no.2, pp. 167-175, Jan 2003. [15] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett., vol. 65, no. 25, pp. 3152-3155, Dec 1990. [16] K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in FCC dielectric media,” Phys. Rev. Lett., vol. 65, no. 21, pp. 2646-2649, Nov. 1990. [17] L. Shen, S. He, and S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B, vol. 66, p. 165315, 2002. [18] K. M. Leung, “Plane wave calculation of photonic band structures” in Photonic band gaps and localizations, C. M. Soukoulis. ed. 1993. [19] J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystal, Princeton University Press, New Jersey, 1995. [20] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. “Equation of state calculations by fast computing machines,” J. Chem. Phys. vol. 21, no. 6, 1953. [21] M. S. Kim and C. C. Guest, “Simulated annealing algorithm for binary phase only filters in pattern classification,” Appl. Opt., vol. 29, no. 8, pp. 1203–1208, July 1990. [22] V. Cerny “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm,” J. Opt. Theory Appl., vol. 45, no. 1, pp. 505-516, 1985. [23] R. R. Brooks, S. S. Iyenger, and S. Rai. “Comparison of Genetic Algorithms and Simulated Annealing for Cost Minimization in a Multisensor System,” Optical Engineering, vol. 37, no. 2, Feb. 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33289 | - |
dc.description.abstract | 本論文中我們利用模擬退火法合成二維光子晶體以提高能隙之寬度並移動其中心頻率。模擬退火法為一處理最佳化問題之機率式迭代法則。在迭代的過程中,我們採用平面波展開法計算光子晶體之能帶,經多次迭代計算後即可合成最佳化之光子晶體。此外,我們亦利用類似方法合成具有低群速度的光子晶體結構,數值計算包括在不同極化與不同的波向量下降低群速度之探討。數值結果顯示模擬退火法確實可用來依不同需求合成光子晶體。 | zh_TW |
dc.description.abstract | The simulated annealing is used to synthesize two-dimensional photonic crystals so that the band gaps are enlarged and shifted. The simulated annealing is a probabilistic and iterative algorithm suitable for many optimization problems. Here the plane wave expansion method is adopted for calculating the band structure at each iteration. Then the photonic crystal can be optimized after iterations. Besides, we employ similar procedure to synthesize photonic crystals with low group velocity for both the TE and TM modes and at various wave vectors. The numerical results show that the simulated annealing can effectively be used to synthesize photonic crystals subject to different specifications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:33:00Z (GMT). No. of bitstreams: 1 ntu-95-R93941051-1.pdf: 3195781 bytes, checksum: 9939bbbd6f77a08714bb9d6246568553 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Chapter 1 Introduction...........................................................1
1.1 Photonic crystals……………...…………………………....1 1.2 Photonic band structure and photonic band gap (PBG)...2 1.3 Motivation of this work……………………………………3 1.4 Organization of the thesis………………………………….4 Chapter 2 Plane Wave Expansion Method………..6 2.1 Plane wave expansion method……………………...…….6 2.2 Fast plane wave expansion method for TE mode………..9 Chapter 3 Simulated Annealing………….....…………14 3.1 Simulated annealing…………...…………………………14 3.2 Synthesis of photonic crystals by using simulated annealing………...………………………………………..17 3.2.1 Enlarging the band gap and shifting the mid-gap frequency………………………………………...…18 3.2.2 Minimizing the group velocity…………………….20 Chapter 4 Numerical Results for Optimization of Photonic Band Gap……………………..26 4.1 Enlarging PBG and shifting mid-gap frequency…….....26 4.2 Enlarging PBG only……………………………………...30 4.3 Searching for large band gap from randomly generated structures………………………………………………....31 Chapter 5 Numerical Results for Minimization of Group Velocity……………….....................46 Chapter 6 Conclusions………………...................................74 References……………...................…………….............................76 | |
dc.language.iso | en | |
dc.title | 以模擬退火法合成二維光子晶體 | zh_TW |
dc.title | Synthesis of Two-Dimensional Photonic Crystals Using Simulated Annealing | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊志忠,邱奕鵬,張宏鈞 | |
dc.subject.keyword | 光子晶體,模擬退火法,平面波展開法,光子晶體能隙, | zh_TW |
dc.subject.keyword | photonic crystals,simulated annealing,plane wave expansion method,photonic band gap, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-20 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 3.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。