Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33238
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李公哲
dc.contributor.authorWei-Shih Hsiehen
dc.contributor.author謝瑋師zh_TW
dc.date.accessioned2021-06-13T04:30:38Z-
dc.date.available2006-07-25
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citationAmpadu, K. O.,Torii, K., “Characterization of ceocement pastes and mortarsproduced from incinerated ashes”, Cement and Concrete Research, 31, 431-436, 2001.
Bertolini, L., Carsana, M., Cassago, D., Curzio, A. Q., Collepardi, D., “MSWI ashes as mineral additions in concrete”, Cement and Concrete Research,34,1899-1906, 2004.
Cheriaf, M., Cavalcante, J., Pera, J., “Pozzolanic properties of pulverized coal combustion bottom ash”, Cement and Concrete Research, 29, 1387-1391, 1999.
Demirbas, A., Karslioglu, S., Ayas, A., “Utilization of lignite ash in concrete mixture”, Cement and Concrete Research, 25(8), 1610-1614, 1995.
Endo, H., Nagayoshi, Y., Suzuki K., “Production of Glass Ceramics from Sewage Sludge”, Water Science and Technology, 36(11), 235-241, 1997.
Forteza, R., Far, M., Segui, C., Cerda, V., “Characterization of bottom ash in municipal solid waste incinerators for its use in road base”, Waste Management, 24, 899-909, 2004.
Frias, M., Cabrera, J., “Pore size distribution and degree of hydration of metakaolin-cement pastes”, Cenment and Concrete Research, 30, 561-569, 2000.
Frias, M., Isabel Sanchez de Rojas, M., Santamaria, J., Rodriguez, C., “Recycling of silicomanganese slag as pozzolanic material in Portland cement:Basic and engineering properties”, Cement and Concrete Research, 36, 487-491, 2006.
Heikal, M., Mahmoud Radwan, M.,Saad Morsy, M., “Influence of curing temperature on the physico-mechanical, characteristics of calcium aluminate cement with air-cooled slag or water-cooled slag”, Ceramics-Silikaty, 48(4), 185-196, 2004.
Itoh, T., “Rapid discrimination of the character of the water-cooled blast furnace slag for Portland slag cement”, Journal of Materials Science, 39, 2191-2193, 2004.
Jimbo, H., “Plasma melting and useful application of molten slag”, Waste Management, 16, 417-422, 1996.
Kida, A., Noma, Y. and Imada, T., “Chemical Speciation and leaching properties of elements in municipal incinerator ashes”, Waste Management, 16(5-6), 527-536, 1996.
Lin, K.L., Wang, K.S., Tzeng,B.Y. and Lin, C.Y., “The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash”, Waste Management, 24, 199-205, 2004.
Mindess, S. and Young, J. F., “Concrete”, Prentice-Hall, Inc., New Jersey, 1981.
Mostafa, N.Y., El-Hemaly, S.A.S., Al-Wakeel, E.I., El-Korashy, S.A., Brown, P.W., “Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag”, Cement and Concrete Research, 31, 899-904, 2001.
Murakami, T., Ishida, T., Sasabe, K., Sasaki, K., Harada, S., “Characteristics of melting process for sewage sludge”, Water Science Technology, 23, 2019-2028, 1991.
Oku, S., Kasai, T., Hiraoka, M., Takeda, N., “Melting System for Sewage Sludge”, Water Science and Technology, 22(12), 319-327, 1990.
Paya, J., Borrachero, M. V., Monzo, J., Bonilla, M., “Properties of Portland cement mortars incorporating high amounts of oil-fuel ashes”, Waste Management, 19, 1-7, 1999.
Sakai, S., Sawell, S. E., Chandler, A. J., Eighmy, T. T., Kosson, D. S., Vehlow, J., van der Sloot, H. A. , Hartlen, J., Hjelmar, O., “World trends in municipal solid waste management”, Waste Management, 16(5-6), 341-450, 1996.
Saraswathy, V., Muralidharan, S., Thangavel, K., Srinivasan, S., “Influence of activated fly ash on corrosion-resistance and strength of concrete”, Cement and Concrete Research, 25, 673-680, 2003.
Somayaji, S., “Civil Engineering Materials”, Prentice-Hall, Inc., New Jersey, 2001.
Stroeven, P., Dai Bui, D., Sabuni, E., “Ash of vegetable waste used for economic production of low to high strength hydraulic binders”, Fuel, 78, 153-159, 1999.
Tangpagasit, J., Cheerarot, R., Jaturapitakkul, C., Kiattikomol, K., “Packing effect and pozzolanic reaction of fly ash in mortar”, Cement and Concrete Research, 35, 1145-1151, 2005.
Tasong, W. A., Lynsdale, C. J., Cripps, J. C., “Aggregate-cement paste interface PartI. Influence of aggregate geochemistry”, Cement and Concrete Research, 29, 1019-1025, 1999.
Tay, J. H., Show, K. Y., “The use of lime-blended sludge for production of cementitious material”, Water Environment Research, 64(1), 6-12, 1992.
Turanli, L., Uzal, B., Bektas, F., “Effect of large amounts of natural pozzolan addition on properties of blended cements”, Cement and Concrete Research, 35, 1106-1111, 2005.
Wasserman, R., Bentur, A., “Effect of lightweight fly ash aggregate microstructure on the strength of concretes”, Cement and Concrete Research, 27(4), 525-537, 1997.
Wiles, C. C., “Municipal solid waste combustion ssh: state-of-the-knowledge”, Journal of Hazardous Materials, 47, 325-344, 1996.
William D. Callister, Jr., “Materials Science and Engineering-An Introduction”, John Wiley&Sons, Inc., Utah, 1999.
Zhang, C., Wang, A., and Tang, M., “The filling role of pozzolanic material ”, Cement and Concrete Research, 26(6), 943-947, 1996.
大嶋吉雄、增田隆司,「下水污泥溶融スラグの有效利用」,下水道協會誌,第26捲,第307號,21-29, 1989。
佐佐木邦利,「溶融スラグのユンクリート骨材利用」,下水道協會誌,第27捲,第315號,35-39, 1990。
森田隆一,「流動-旋回熔融炉-加古川市」,下水道協會誌,第26捲,第307號,57-62, 1989。
王鯤生、林凱隆、黃尊謙、李宗彥,「都市垃圾焚化飛灰熔渣粉體在水泥中之反應性研究」,第十五屆廢棄物技術研討會,中央環工所,2000。
王鯤生、江康鈺、葉宗智、林仕敏,「都市垃圾焚化底渣重金屬物種分析與溶出特性之研究」,第十一屆廢棄物處理技術研討會,中央環工所,1996。
王鯤生、張旭彰,「垃圾焚化灰渣熔融處理操作特性之研究」,第七屆廢棄物技術研討會,中央環工所,1992。
江慧嫻,「工業廢水污泥/淨水污泥共同熔融處理之基礎性及資源化研究」,碩士論文,國立台灣大學環境工程學研究所,2001。
江康鈺、王鯤生,「污泥熔融處理及資源再利用技術」,工業污染防治,第64期,156-188,1997。
何秀美,「污泥與底灰資源化為透水磚之研究」,碩士論文,國立台灣大學環境工程學研究所,2003。
何春松,「灰渣熔融技術之發展」,國立台灣大學台大工程學刊,第84期,137-152,2002。
沈得縣,「高等混凝土講義」,國立台灣科技大學營建工程系,1991。
林珊如,「半導體氟化鈣污泥再利用」,永續展業發展月刊,第5期,63-68,2002.
林詩瑋,「焚化底渣/氟化鈣污泥熔渣混凝土之耐久性研究」,碩士論文,國立台灣大學環境工程學研究所,2005。
林凱隆,「都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究」,博士論文,國立中央大學環境工程學研究所,2002。
張思凡,「都市生活污水處理廠污泥資源化再利用之回顧及展望」,環境工程會刊,第11卷,第2期,59-80,2000。
張祖恩、柯明賢、施百鴻,「焚化灰渣資源化技術」,廢棄物資源再生技術研究成果發表會,成大環工所,2000。
郭容忍、陳韋弘、黃志彬、袁如馨,「焚化灰渣作為水泥生料對卜特蘭水泥影響之研究」,第十九屆廢棄物處理技術研討會,交大環工所,2004。
陳永翔,「焚化灰渣熔融及資源化處理之研究」,碩士論文,國立台北科技大學材料及資源工程研究所,2001。
黃兆龍,「混凝土性質與行為」,詹氏書局,2002。
詹孟贇、李釗、歐陽嶠暉,「都市下水污泥熔渣細骨材利用可行性之研究」,第十屆廢棄物處理技術研討會,中央環工所,1995。
熊正琇,「工業廢水污泥/淨水污泥共同熔融處理之操作參數及資源化研究」,碩士論文,國立台灣大學環境工程學研究所,2003。
鄧志夫,「工業廢水污泥/焚化底渣共同熔融處理之資材化研究」,碩士論文,國立台灣大學環境工程學研究所,2004。
蕭炳欽,「都市垃圾灰渣與下水污泥灰渣共同高溫熔融處理操作溫度特性之研究」,碩士論文,國立中央大學環境工程學研究所,1993。
韓嘉智,「陶瓷燒結技術應用於氟化鈣污泥資源再利用」,台灣環保產業雙月刊,第22期,2003。
羅雅含,「工業廢水污泥/淨水污泥共同熔融處理之資源化研究」,碩士論文,國立台灣大學環境工程學研究所,2002。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33238-
dc.description.abstract本研究利用熔融技術,將垃圾焚化底渣與氟化鈣污泥進行共同熔融處理,並將所得之氣冷熔渣作為取代水泥之攙料,探討氣冷熔渣之卜作嵐性質;同時將所得之氣冷熔渣過篩符合細骨材之級配要求,用以取代水泥砂漿中之細骨材,並與水冷熔渣相比較。本實驗總共分成三階段,第一階段為尋求焚化底渣與氟化鈣污泥共同熔融之最低溫度,第二階段為氣冷熔渣之基本性質分析,第三階段則是將熔渣粉體取代部分水泥之後,利用各種試驗,如抗壓試驗、MIP、SEM等試驗,探討其卜作嵐性質;同時製備氣冷及水冷熔渣取代細骨材,評估熔渣取代細骨材之合適性。
實驗結果顯示,當焚化底渣與氟化鈣污泥之配比為7:3時,鹽基度CaO/SiO2約為1.15,具有最低之熔流溫度1079℃,此配比經熔融氣冷降溫之後具有部份結晶質,成分為與C級飛灰接近之卜作嵐材料。將熔渣粉體依不同水泥取代率添加至水泥砂漿中,經由各項試驗結果顯示,氣冷熔渣粉體作為水泥攙料具有「綜效作用」(Synergic effect),不但具有卜作嵐特性可使內部結構更緻密且因其具有較多結晶化排列結構,可使得抗壓強度提升,且在相同之水泥取代率條件下,並不亞於水冷熔渣作為水泥攙料之效益。利用氣冷熔渣取代細骨材,其表乾比重為2.98,吸水率為0.65,單位容積為1750kg/cm3,皆符合CNS之細骨材級配標準,取代至40%之水泥砂漿其抗壓強度仍持續上升,且強度皆大於水冷熔渣取代之水泥砂漿,相對的,水冷熔渣作為細骨材之最大抗壓強度時之取代率為30%,易言之,氣冷熔渣較水冷熔渣有更大之細骨材取代量,就廢棄物骨材化之應用而言,氣冷熔渣具有更高之市場競爭力,也更顯示熔渣冷卻方式對熔渣造成之影響,也應視為廢棄物資材化之重要指標。
zh_TW
dc.description.abstractThe purpose of this research was to study the effect of co-melting slags produced from MSWI bottom ash and industrial calcium fluoride on pozzolanic reaction in cement-based composites, and to investigate the suitability of using slag as fine aggregate. The co-melting slag was air-cooled(AS) under room temperature, and then compared with water-cooled slag(WS). The experiments were divided into three stages:(1) Determine the lowest pouring temperature of co-melting ash and sludge at various proportions. (2) Analyze the physical and chemical characteristics of the air-cooled slag, such as chemical composition, TCLP, XRD patterns and strength activity index(SAI). (3) Incorporate the slag with the cement-based composites material as mineral admixtures to replace a fraction of the cement, and evaluate the influence of the replacement ratio on performance of the cement-based composites materials in terms of setting times, compressive strengths, (MIP), etc. Additionally, the effect of replacing fine sand in cement-based composites at various curing ages on compressive strengths and porosity were explored in order to evaluate the feasibility of replacing fine aggregate by slag.
The experimental results showed that the lowest pouring temperature was 1079℃ when the co-melting ash and sludge were in the ratio of 7:3. The molten samples were cooled at room temperature and their properties were then examined. It was observed that the air-cooled slag was more crystalline than that of water-cooled slag, and its chemical composition was close to Class C fly ash.
The test results of compressive strengths, degree of hydration, MIP and SEM indicated that the slag was a latent pozzlan and it could replace 3% to 20% cement in mortar. It was also demonstrated that the pulverized slag as mineral admixtures has the synergic effect. The air-cooled slag had not only pozzolanic activity but also crystalline structure, so it could cause higher compressive strength as compared with water-cooled slag. In addition to replacement of cement, the air-cooled slag could be used to replace the fine aggregates due to its physical properties complied with the CNS requirements. The compressive strength of the air-cooled slag was ascendant continuity with the replacement ratio of 40% and its strength was higher than that of the water-cooled slag. Corresponsively, the water-cooled slag could reach its highest strength with replacement ratio of 30%. Altogether, the air-cooled slag could be a more suitable replacement of the natural fine aggregate. As far as the waste reutilization was concerned, the air-cooled slag was more competitive regarding market mechanism. It also exhibited that the cooling conditions of the melting process could be employed as the indicator for selecting the target reutilization route.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:30:38Z (GMT). No. of bitstreams: 1
ntu-95-R93541105-1.pdf: 2032448 bytes, checksum: e48bb1aaa485c8a92fa0b3ac9666f66f (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 前言 1
1.1研究緣起 1
1.2研究目的與內容 2
第二章 文獻回顧 4
2.1 垃圾焚化底渣之處置及資源化技術 4
2.1.1垃圾焚化底渣之處置現況 4
2.1.2垃圾焚化底渣之特性 4
2.1.3垃圾焚化底渣之資源化技術 5
2.2氟化鈣污泥之處置及資源化技術 8
2.2.1氟化鈣污泥處置現況 8
2.2.2氟化鈣污泥資源化技術 9
2.3熔融技術之探討 12
2.3.1熔融基本原理 12
2.3.2熔渣特性 14
2.3.3熔渣冷卻方式 15
2.3.4熔渣資材化應用現況 19
2.4水泥基本原理及特性 20
2.4.1水泥之製造及組成 20
2.4.2骨材與水泥漿體之關係 24
2.4.3 水泥基複合材料性質 25
2.5卜作嵐材料之應用 30
2.5.1卜作嵐材料之種類及特性 30
2.5.2卜作嵐反應之基本原理 31
2.5.3卜作嵐材料之相關研究 33
第三章 實驗材料、設備與方法 35
3.1試驗流程與內容 35
3.2實驗材料及設備 40
3.2.1實驗材料 40
3.2.2實驗設備 41
3.3實驗分析方法及分析儀器 43
第四章 結果與討論 56
4.1底渣/污泥基本性質分析 56
4.1.1 三成份分析 56
4.1.2 元素組成及重金屬分析 56
4.1.3 毒性特性溶出試驗及氫離子濃度指數 59
4.1.4 晶相分析及微觀分析 61
4.2 底渣/污泥配比與鹽基度對熔流溫度下降之效果 64
4.3 熔渣粉體與骨材之材料性質探討 67
4.3.1 熔渣粉體之物理性質 67
4.3.2 熔渣粉體之化學性質 68
4.3.3 熔渣骨材之材料性質 69
4.3.4 熔渣毒性溶出試驗結果 71
4.3.5 熔渣之晶相探討 72
4.4 熔渣水泥漿體凝結行為探討 74
4.5 熔渣卜作嵐性質探討 76
4.6 氣冷熔渣取代水泥之水泥砂漿性質探討 79
4.6.1 熔渣與抗壓強度之發展 79
4.6.2 水化程度與氫氧化鈣含量之探討 84
4.6.3 熔渣水泥砂漿之孔隙結構比較 90
4.6.4 熔渣水泥砂漿之DSC熱差分析 96
4.6.5 熔渣水泥砂漿之NMR核磁共振分析 100
4.6.6 熔渣水泥砂漿之微觀分析 105
4.7氣冷/水淬熔渣取代細骨材之水泥砂漿性質之探討 111
4.7.1 水淬/氣冷熔渣之抗壓強度比較 111
4.7.2 水冷/氣冷熔渣之孔隙結構與抗壓強度之關聯性分析 115
第五章 結論與建議 122
5.1 結論 122
5.2 建議 125
參考文獻 126
dc.language.isozh-TW
dc.title冷卻方式對焚化底渣/氟化鈣污泥
共同熔融資材化之影響研究
zh_TW
dc.titleReutilization Study on the Effect of Cooling Conditions on Co-melting of CaF2 Sludge and Bottom ashen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林正芳,王鯤生
dc.subject.keyword熔融,熔渣,攙料,細骨材,卜作嵐性質,綜效作用,zh_TW
dc.subject.keywordmelting process,slag,admixtures,aggregates,pozzolanic activity,synergic effect,en
dc.relation.page130
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved