Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞(Hung-Chun Chang)
dc.contributor.authorBor-Jien Chenen
dc.contributor.author陳柏堅zh_TW
dc.date.accessioned2021-06-13T04:29:49Z-
dc.date.available2007-07-26
dc.date.copyright2006-07-26
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citation[1] Adams, M. J., An Introduction to Optical Waveguides. New York: Wiley,
1981.
[2] Ando, T., H. Nakayama, S. Numata, J. Yamauchi, ahd H.
Nakano,“Eigenmode analysis of optical waveguides by a Yee-mesh-based
imaginary-distance propagation method for an arbitrary dielectric interface,”
J. Lightwave Technol., vol. 20, pp. 1627–1634, 2002.
[3] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic
waves,” J. Comp. Phys., vol. 114, pp. 185–200, 1994.
[4] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of
rectangular dielectric waveguide structures,” IEEE Trans. Microwave
Theory Tech., MTT-34, pp. 1104–1114, 1986.
[5] Bures, J., S. Lacroix, and J. Lapierre, “Analysis of fused single-mode
optical fiber bidirectional couplers,” Appl. Opt., vol. 22, pp. 1918–1922,
1984.
[6] Chew, W. C., Waves and Fields in Inhomogeneuous Media. New York:
Van nostrand Reinhold, 1990, Chap. 4.
94
[7] Chew, W. C., and W. H. Weedon, “A 3-D perfectly matched medium
from modified Maxwell’s equations with stretched coordinates,” Microwave
Opt. Tech. Lett., vol. 12, pp. 599–604, 1994.
[8] Chung, Y., and N. Dagli, “Explicit finite difference beam propagation
method: applications to semiconductor rib waveguide Y-junction analysis,”
IEEE Electron. Lett., vol. 26, pp. 711–713, 1990.
[9] Ferrarini, D., L. Vincetti, and M. Zoboli, “Leakage properties of photonic
crystal fibers,” Opt. Express, vol. 10, pp. 1314–1319, 2002.
[10] Feit M. D., and J. A. Fleck, Jr., “Light propagation in graded-index
optical fibers,” Appl. Opt., vol. 17, pp. 3998–3998, 1978.
[11] Goell, J. E., “A circular-harmonic computer analysis of rectangular dielectric
waveguides,” Bell Syst. Tech J., vol. 48, pp. 2133–2160, 1969.
[12] Hadley, G. R., “Transparent boundary condition for beam propagation,”
Opt. Lett., vol. 16, pp. 624–626, 1991.
[13] Hadley, G. R., “Multistep method for wide-angle beam propagation,”
Opt. Lett., vol. 17, pp. 1743–1745, 1992.
[14] Hsueh, Y. L., Research and Applications of Three-Dimensional Vectorial
Beam Propagation Methods, M. S. Thesis, Graduate Institute of Electro-
Optical Engineering, National Taiwan University, Taipei, Taiwan, June
1988.
[15] Hsueh, Y. L., M. C. Yang, and H.C. Chang, “Three-Dimensional Noniterative
Full-Vectorial Beam Propagation Method Based on the Alter-
95
nating Direction Implicit Method,” J. Lightwave Technol., vol. 17, pp.
2389–2397, 1999.
[16] Huang, W. P., and C. L. Xu, “A wide-angle vector beam propagation
method,” IEEE Photon. Technol. Lett., vol. 4, pp. 1118-1120, 1992.
[17] Huang, W. P., and C. L. Xu, “Simulation of three-dimensional optical
waveguides by a full-vector beam propagation method,” IEEE J. Quantum
Electron., vol. 29, pp. 2639–2649, 1993.
[18] Huang, W. P., C. L. Xu, and S. K. Chaudhuri, “A vector beam propagation
method for guided wave optics,” IEEE Photon. Technol. Lett.,
vol. 3, pp. 910–913, 1991.
[19] Huang, W. P., C. L. Xu, and S. K. Chaudhuri, “Application of the
finite difference vector beam propagation method to directional coupler
devices,” IEEE J. Quantum Electron., vol. 28, pp. 1527–1532, 1992.
[20] J¨ungling, S., and J. C. Chen, “A study and optimization of eigenmode
calculations using the imaginary-distance beam-propagation method,”
J. Lightw. Technol., vol. 30, pp. 2098–2105, 1994.
[21] Lee, S. M., “Finite-difference vectorial-beam-propagation method using
Yee’s discretization scheme for modal fields,” J. Opt. Soc. Amer. A, Opt.
Image Sci., vol. 13, pp. 1369–1377, 1996.
[22] Obaya, S. S. A., B. M. Azizur Rahman, T. V. Grattan, and H. A.
El-Mikati, “Full vectorial finite-element-based imaginary distance beam
propagation solution of complex modes in optical waveguides,” J. Lightwave
Technol., vol. 20, pp. 1054–1060, 2002.
96
[23] Press, W. H.,S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes. Cambridge, U.K.: Cambridge Univ. Press, 1992.
[24] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly
matched anisotropic absorber for use as an absorbing boundary condition,”
IEEE Trans. Antennas Propagat., vol. 43, pp. 1460–1463, 1995.
[25] Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam
propagation method based on a finite element scheme: application to
photonic crystal Fibers,” IEEE J. Quantum Electronics, vol. 38, pp.
927–933, 2002.
[26] Su, C. C., “A combined method for dielectric waveguides using the finiteelement
technique and the surface integral equations method,” IEEE
Trans. Microwave Theory Tech., vol. 34, pp. 1140–1145, 1986.
[27] Teixeira, F. L., andW. C. Chew, “General closed-form PML constitutive
tensors to match arbitrary bianisotropic abd dispersive linear media,”
IEEE Microwave Guided Wave Lett., vol. 8, pp. 223–225, 1998.
[28] Tsuji, Y., and M. Koshiba, “Guided-mode and leaky-mode analysis by
imaginary distance beam propagation method based on finite element
scheme,” J. Lightwave Technol., vol. 18, pp. 618–623, 2000.
[29] Van Der Vorst, H. A., “Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear system,” SIAM
J.Sci. Stat. Comput., vol. 13, pp. 631–644, 1992.
[30] Wu, T. L., and Chang, H. C., “Vectorial analysis of fiber-core effects in
97
weakly fused couplers,” IEEE Photon. Technol. Lett., vol. 9, pp. 218–
219, 1997.
[31] Xu, C. L., W. P. Huang and S. K. Chaudhuri, “Efficient and accurate
vector mode calculations by beam propagation method,” J. Lightw.
Technol.,, vol. 11, pp. 1209–1215, 1993.
[32] Yamauchi, J., N. Morohashi, and H. Nakano, “Rib waveguide analysis
by the imaginary-distance vectorial beam-propagation method based on
Yee’s mesh,” Opt. Quantum Electron., vol. 30, pp. 397–402, 1998.
[33] Yamauchi, J., T. Mugita, and H. Nakano,“Implicit Yee-mesh-based
finite-difference full-vectorial beam-propagation method,” J. Lightwave
Technol., vol. 23, pp. 1947–1955, 2005.
[34] Yang, S. W., and H. C. Chang, “Numerical modeling of weakly fused
fiber-optic polarization beamsplitters–Part I: Accurate calculation of
coupling coefficients and form birefringence,” J. Lightwave Technol., vol.
16, pp. 685–690, 1998.
[35] Yang, S. W., and H. C. Chang, “Numerical modeling of weakly fused
fiber-optic polarization beamsplitters–Part II: The three-dimensional
electromagnetic model,” J. Lightwave Technol., vol. 16, pp. 691–696,
1998.
[36] Yee, K. S., “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propagat., vol. 14, pp. 302–307, 1966.
98
[37] Yevick, D., and B. Hermansson, “New approach to lossy optical waveguides,”
Electron. Lett., vol. 21, pp. 1029–1030, 1985.
[38] Yevick, D., and B. Hermansson, “Efficient beam propagation techniques,”
IEEE J. Quantum Electron., vol. 26, pp. 109–112, 1990.
[39] Yevick, D., and W. Bardyszewski, “Correspondence of variational finitedifference
(relazation) and imaginary-distance propagation methods for
modal analysis,” Opt. Lett., vol. 17, pp. 329–330, 1992.
[40] Yevick, D., B.Hermansson, and M.Glasner, “Fresnel and wide-angle
equation analyses of microlenses,” IEEE Photon. Technol. Lett., vol.
2, pp. 412–414, 1990.
[41] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode
solver with PML absorbing boundary conditions for optical waveguides
and photonic crystal fibers,” Opt. Express., vol. 12, pp. 6165–6177, 2004.
99
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33219-
dc.description.abstract本研究採用以余氏網格為基礎的全向量有限差分波束傳播法,以
分析各種光波導結構的模態特性。此方法採用余氏網格直接離散馬克
斯威爾方程式,並應用虛軸波束傳播法的技巧。此種直接傳播的方法
在計算時間與記憶需求方面具有效率,並可以有效地同時求得波導模
態傳播常數與場形分佈。此外,為能求解洩漏模態問題並計算其傳播
損耗,本研究採用完美匹配層以吸收傳向計算邊界的波能。余氏網格
的採用得以同時提供電場與磁場各分量,因而其特徵模態場形可直接
當作相關問題的初始場套用於同樣使用余氏網格的有限時域差分
法,以利後續的計算。本研究分別建立了顯式和隱式兩種不同離散方
式的虛軸波束傳播法,經由分析傳統光纖、波導與融燒式光纖耦合結
構以及光子晶體光纖,檢驗方法的精準度。數值結果顯示與正確分析
解或其他數值方法的結果有很好的吻合度。
zh_TW
dc.description.abstractFinite-difference full vectorial beam propagation methods using Yee’s
mesh discretization scheme of both explicit form and implicit form are adopted
in this thesis to analyze the modal characteristics of optical waveguide structures
with various cross-sections. The method is derived from directly discretizing
Maxwell’s equations with the use of Yee’s mesh and utilizing the
technique of imaginary-distance beam propagation method (ID-BPM). Such
a direct propagation method is efficient in terms of CPU time and memory
requirements. The propagation constants and their corresponding field distributions
can be obtained efficiently and simultaneously. In addition, for
solving the leaky-mode problems and calculating the corresponding propagation
loss, the perfectly matched layers (PMLs) are incorporated into our
formulations. Because of the use of Yee’s mesh, the electric and magnetic field
components can be simultaneously evaluated, and the obtained eigenmode
profile can be utilized as an incident field of related problems to be analyzed
by the finite-difference time-domain (FDTD) method which utilizes the same
Yee’s mesh. We establish the explicit Yee’s mesh ID-BPM (EY-ID-BPM) and
the implicit Yee’s mesh ID-BPM (IY-ID-BPM) and examine their accuracy
through analyzing conventional fibers, waveguides, and fused fiber coupler
structures as well as photonic crystal fibers (PCFs). The results are in close
agreement with either analytical values or published results using different
numerical methods.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:29:49Z (GMT). No. of bitstreams: 1
ntu-95-R93941012-1.pdf: 2837054 bytes, checksum: ba87bff3abd69d65ea18a0b889e7cee8 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 Introduction 1
1.1 A Brief Review . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Explicit and Implicit Algorithms . . . . . . . . . . . . . . . . . 5
1.4 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Mathematical Formulations and Related Techniques 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Explicit Yee’s Mesh BPM . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Numerical Stability Analysis . . . . . . . . . . . . . . . 15
2.3 Implicit Yee’s Mesh BPM . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Fresnel-Type Equations . . . . . . . . . . . . . . . . . 18
2.3.2 Finite-Difference Equations . . . . . . . . . . . . . . . 20
2.4 Inhomogeneous Medium Interface Condition . . . . . . . . . . 25
2.5 Computational Domain Boundary Conditions . . . . . . . . . 27
2.5.1 The Transparent Boundary Condition (TBC) . . . . . 28
2.5.2 The Perfectly Matched Layer (PML) . . . . . . . . . . 29
3 Numerical Results–Traditional Fibers and Waveguides 38
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
i
3.2 Circular Waveguides . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Dispersion Curves of Different Waveguides . . . . . . . . . . . 41
3.4 Fused Fiber-Optic Couplers . . . . . . . . . . . . . . . . . . . 43
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Numerical Results–Photonic Crystal Fibers 67
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Triangular Holey Fibers . . . . . . . . . . . . . . . . . . . . . 68
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5 Conclusion 92
ii
dc.language.isoen
dc.subject光波導zh_TW
dc.subject波束傳播法zh_TW
dc.subject向量有限差分zh_TW
dc.subjectoptical waveguideen
dc.subjectvector finite differenceen
dc.subjectbeam propagation methoden
dc.title採用余氏網格之向量有限差分
波束傳播法於光波導問題之研究
zh_TW
dc.titleYee-Mesh-Based Vector Finite Difference Beam Propagation
Method for Optical Waveguide Analysis
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),邱奕鵬(Yih-Peng Chiou),鄧君豪(Chun-Hao Teng)
dc.subject.keyword向量有限差分,波束傳播法,光波導,zh_TW
dc.subject.keywordvector finite difference,beam propagation method,optical waveguide,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved