請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Bor-Jien Chen | en |
| dc.contributor.author | 陳柏堅 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:29:49Z | - |
| dc.date.available | 2007-07-26 | |
| dc.date.copyright | 2006-07-26 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-21 | |
| dc.identifier.citation | [1] Adams, M. J., An Introduction to Optical Waveguides. New York: Wiley,
1981. [2] Ando, T., H. Nakayama, S. Numata, J. Yamauchi, ahd H. Nakano,“Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” J. Lightwave Technol., vol. 20, pp. 1627–1634, 2002. [3] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys., vol. 114, pp. 185–200, 1994. [4] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microwave Theory Tech., MTT-34, pp. 1104–1114, 1986. [5] Bures, J., S. Lacroix, and J. Lapierre, “Analysis of fused single-mode optical fiber bidirectional couplers,” Appl. Opt., vol. 22, pp. 1918–1922, 1984. [6] Chew, W. C., Waves and Fields in Inhomogeneuous Media. New York: Van nostrand Reinhold, 1990, Chap. 4. 94 [7] Chew, W. C., and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Tech. Lett., vol. 12, pp. 599–604, 1994. [8] Chung, Y., and N. Dagli, “Explicit finite difference beam propagation method: applications to semiconductor rib waveguide Y-junction analysis,” IEEE Electron. Lett., vol. 26, pp. 711–713, 1990. [9] Ferrarini, D., L. Vincetti, and M. Zoboli, “Leakage properties of photonic crystal fibers,” Opt. Express, vol. 10, pp. 1314–1319, 2002. [10] Feit M. D., and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt., vol. 17, pp. 3998–3998, 1978. [11] Goell, J. E., “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech J., vol. 48, pp. 2133–2160, 1969. [12] Hadley, G. R., “Transparent boundary condition for beam propagation,” Opt. Lett., vol. 16, pp. 624–626, 1991. [13] Hadley, G. R., “Multistep method for wide-angle beam propagation,” Opt. Lett., vol. 17, pp. 1743–1745, 1992. [14] Hsueh, Y. L., Research and Applications of Three-Dimensional Vectorial Beam Propagation Methods, M. S. Thesis, Graduate Institute of Electro- Optical Engineering, National Taiwan University, Taipei, Taiwan, June 1988. [15] Hsueh, Y. L., M. C. Yang, and H.C. Chang, “Three-Dimensional Noniterative Full-Vectorial Beam Propagation Method Based on the Alter- 95 nating Direction Implicit Method,” J. Lightwave Technol., vol. 17, pp. 2389–2397, 1999. [16] Huang, W. P., and C. L. Xu, “A wide-angle vector beam propagation method,” IEEE Photon. Technol. Lett., vol. 4, pp. 1118-1120, 1992. [17] Huang, W. P., and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron., vol. 29, pp. 2639–2649, 1993. [18] Huang, W. P., C. L. Xu, and S. K. Chaudhuri, “A vector beam propagation method for guided wave optics,” IEEE Photon. Technol. Lett., vol. 3, pp. 910–913, 1991. [19] Huang, W. P., C. L. Xu, and S. K. Chaudhuri, “Application of the finite difference vector beam propagation method to directional coupler devices,” IEEE J. Quantum Electron., vol. 28, pp. 1527–1532, 1992. [20] J¨ungling, S., and J. C. Chen, “A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method,” J. Lightw. Technol., vol. 30, pp. 2098–2105, 1994. [21] Lee, S. M., “Finite-difference vectorial-beam-propagation method using Yee’s discretization scheme for modal fields,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 13, pp. 1369–1377, 1996. [22] Obaya, S. S. A., B. M. Azizur Rahman, T. V. Grattan, and H. A. El-Mikati, “Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides,” J. Lightwave Technol., vol. 20, pp. 1054–1060, 2002. 96 [23] Press, W. H.,S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes. Cambridge, U.K.: Cambridge Univ. Press, 1992. [24] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat., vol. 43, pp. 1460–1463, 1995. [25] Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal Fibers,” IEEE J. Quantum Electronics, vol. 38, pp. 927–933, 2002. [26] Su, C. C., “A combined method for dielectric waveguides using the finiteelement technique and the surface integral equations method,” IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1140–1145, 1986. [27] Teixeira, F. L., andW. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic abd dispersive linear media,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 223–225, 1998. [28] Tsuji, Y., and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol., vol. 18, pp. 618–623, 2000. [29] Van Der Vorst, H. A., “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear system,” SIAM J.Sci. Stat. Comput., vol. 13, pp. 631–644, 1992. [30] Wu, T. L., and Chang, H. C., “Vectorial analysis of fiber-core effects in 97 weakly fused couplers,” IEEE Photon. Technol. Lett., vol. 9, pp. 218– 219, 1997. [31] Xu, C. L., W. P. Huang and S. K. Chaudhuri, “Efficient and accurate vector mode calculations by beam propagation method,” J. Lightw. Technol.,, vol. 11, pp. 1209–1215, 1993. [32] Yamauchi, J., N. Morohashi, and H. Nakano, “Rib waveguide analysis by the imaginary-distance vectorial beam-propagation method based on Yee’s mesh,” Opt. Quantum Electron., vol. 30, pp. 397–402, 1998. [33] Yamauchi, J., T. Mugita, and H. Nakano,“Implicit Yee-mesh-based finite-difference full-vectorial beam-propagation method,” J. Lightwave Technol., vol. 23, pp. 1947–1955, 2005. [34] Yang, S. W., and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters–Part I: Accurate calculation of coupling coefficients and form birefringence,” J. Lightwave Technol., vol. 16, pp. 685–690, 1998. [35] Yang, S. W., and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters–Part II: The three-dimensional electromagnetic model,” J. Lightwave Technol., vol. 16, pp. 691–696, 1998. [36] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307, 1966. 98 [37] Yevick, D., and B. Hermansson, “New approach to lossy optical waveguides,” Electron. Lett., vol. 21, pp. 1029–1030, 1985. [38] Yevick, D., and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron., vol. 26, pp. 109–112, 1990. [39] Yevick, D., and W. Bardyszewski, “Correspondence of variational finitedifference (relazation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett., vol. 17, pp. 329–330, 1992. [40] Yevick, D., B.Hermansson, and M.Glasner, “Fresnel and wide-angle equation analyses of microlenses,” IEEE Photon. Technol. Lett., vol. 2, pp. 412–414, 1990. [41] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express., vol. 12, pp. 6165–6177, 2004. 99 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33219 | - |
| dc.description.abstract | 本研究採用以余氏網格為基礎的全向量有限差分波束傳播法,以
分析各種光波導結構的模態特性。此方法採用余氏網格直接離散馬克 斯威爾方程式,並應用虛軸波束傳播法的技巧。此種直接傳播的方法 在計算時間與記憶需求方面具有效率,並可以有效地同時求得波導模 態傳播常數與場形分佈。此外,為能求解洩漏模態問題並計算其傳播 損耗,本研究採用完美匹配層以吸收傳向計算邊界的波能。余氏網格 的採用得以同時提供電場與磁場各分量,因而其特徵模態場形可直接 當作相關問題的初始場套用於同樣使用余氏網格的有限時域差分 法,以利後續的計算。本研究分別建立了顯式和隱式兩種不同離散方 式的虛軸波束傳播法,經由分析傳統光纖、波導與融燒式光纖耦合結 構以及光子晶體光纖,檢驗方法的精準度。數值結果顯示與正確分析 解或其他數值方法的結果有很好的吻合度。 | zh_TW |
| dc.description.abstract | Finite-difference full vectorial beam propagation methods using Yee’s
mesh discretization scheme of both explicit form and implicit form are adopted in this thesis to analyze the modal characteristics of optical waveguide structures with various cross-sections. The method is derived from directly discretizing Maxwell’s equations with the use of Yee’s mesh and utilizing the technique of imaginary-distance beam propagation method (ID-BPM). Such a direct propagation method is efficient in terms of CPU time and memory requirements. The propagation constants and their corresponding field distributions can be obtained efficiently and simultaneously. In addition, for solving the leaky-mode problems and calculating the corresponding propagation loss, the perfectly matched layers (PMLs) are incorporated into our formulations. Because of the use of Yee’s mesh, the electric and magnetic field components can be simultaneously evaluated, and the obtained eigenmode profile can be utilized as an incident field of related problems to be analyzed by the finite-difference time-domain (FDTD) method which utilizes the same Yee’s mesh. We establish the explicit Yee’s mesh ID-BPM (EY-ID-BPM) and the implicit Yee’s mesh ID-BPM (IY-ID-BPM) and examine their accuracy through analyzing conventional fibers, waveguides, and fused fiber coupler structures as well as photonic crystal fibers (PCFs). The results are in close agreement with either analytical values or published results using different numerical methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:29:49Z (GMT). No. of bitstreams: 1 ntu-95-R93941012-1.pdf: 2837054 bytes, checksum: ba87bff3abd69d65ea18a0b889e7cee8 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 A Brief Review . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Explicit and Implicit Algorithms . . . . . . . . . . . . . . . . . 5 1.4 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Mathematical Formulations and Related Techniques 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Explicit Yee’s Mesh BPM . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Numerical Stability Analysis . . . . . . . . . . . . . . . 15 2.3 Implicit Yee’s Mesh BPM . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Fresnel-Type Equations . . . . . . . . . . . . . . . . . 18 2.3.2 Finite-Difference Equations . . . . . . . . . . . . . . . 20 2.4 Inhomogeneous Medium Interface Condition . . . . . . . . . . 25 2.5 Computational Domain Boundary Conditions . . . . . . . . . 27 2.5.1 The Transparent Boundary Condition (TBC) . . . . . 28 2.5.2 The Perfectly Matched Layer (PML) . . . . . . . . . . 29 3 Numerical Results–Traditional Fibers and Waveguides 38 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 i 3.2 Circular Waveguides . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Dispersion Curves of Different Waveguides . . . . . . . . . . . 41 3.4 Fused Fiber-Optic Couplers . . . . . . . . . . . . . . . . . . . 43 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Numerical Results–Photonic Crystal Fibers 67 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 Triangular Holey Fibers . . . . . . . . . . . . . . . . . . . . . 68 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Conclusion 92 ii | |
| dc.language.iso | en | |
| dc.subject | 光波導 | zh_TW |
| dc.subject | 波束傳播法 | zh_TW |
| dc.subject | 向量有限差分 | zh_TW |
| dc.subject | optical waveguide | en |
| dc.subject | vector finite difference | en |
| dc.subject | beam propagation method | en |
| dc.title | 採用余氏網格之向量有限差分
波束傳播法於光波導問題之研究 | zh_TW |
| dc.title | Yee-Mesh-Based Vector Finite Difference Beam Propagation
Method for Optical Waveguide Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),邱奕鵬(Yih-Peng Chiou),鄧君豪(Chun-Hao Teng) | |
| dc.subject.keyword | 向量有限差分,波束傳播法,光波導, | zh_TW |
| dc.subject.keyword | vector finite difference,beam propagation method,optical waveguide, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
