Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33217
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周謀鴻(Mo-Hong Chou)
dc.contributor.authorMau-Ling Hsuen
dc.contributor.author徐茂霖zh_TW
dc.date.accessioned2021-06-13T04:29:43Z-
dc.date.available2009-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citation[ 1 ] Kato,T.(1958), “ Perturbation theory for nullity. ” 261-322.
[ 2 ] Ciarlet, P.G. and Lions J.L.(1991), “ Handbook of numerical analysis. ” 683-699.
[ 3 ] Babuska, I. and A. Aziz (1973) “ Survey lectures on the mathematical foundations of the finite element method. ” 5-359
[ 4 ] William G. Kolata(1978) “ Approximation in variationally posed eigenvalue problems. ” Numer. Math. 29, 159-171
[ 5 ] Ciarlet, P.G.(2002) “ The finite element method for elliptic problem.”
[ 6 ] Francoise Chatelin (1983) “ Spectral approximation of linear operators. ”
[ 7 ] Darrell W. Pepper, Juan C. Heinrich (1973) “The finite element method : basic concepts and application. ”
[ 8 ] O. Axelsson and V. A. Barker(1984) “Finite element solution of Boundary value Problems.”
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33217-
dc.description.abstractThis Helmholtz equation occurs frequently in dynamic meteorology. In classical physics it is the equation of the vibrating membrane. Time-harmonic wave propagation, either elastic waves or electromagnetic waves, is a common phenomenon that appears in many applications such as acoustic wave scattering from submarines, noise reduction in silencers and mufflers, earthquake wave propagation.
First, the Helmholtz equation reduces to that of solving a generalized eigenvalue problem. In the chapter 2, it shows that the order of the error of eigenvalue is O(h^2) by the application of the spectral theory.
In the latest chapter, the Helmholtz equation can be solved via finite element methods. In these numerical results, the eigenvalues are solved throughout a linear triangular element is recognized as approximation. The eigenvalue are solved throughout a quadratic triangular element is recognized as exact solution, since this numerical method has much higher rate of convergence. In addition, we compare the difference between linear triangular element and quadratic triangular element by refining the mesh.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:29:43Z (GMT). No. of bitstreams: 1
ntu-95-R91221021-1.pdf: 255849 bytes, checksum: 2c1d275b47fe621bb57849cea14553d6 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1. Basic conception 1
1.1 Introduction 1
1.2 Helmholtz Equation 2
Chapter 2. Spectral theory 3
2.1 Basic of the spectral theory 3
2.2 Survey of spectral theory for compact operator 4
2.3 Spectral projection 5
2.4 Fundamental results on the spectral approximation 6
2.5 The analysis of estimation of eigenvalues 8
Chapter 3. Finite element method with triangular
element 12
3.1 Discretize the eigenvalue problem 12
3.2 Linear shape functions 13
3.3 Quadratic shape functions 16
Chapter 4. Numerical results and discussions 19
Appendix. The properties of mesh generation 25
References 27
dc.language.isoen
dc.subject有限元素法zh_TW
dc.subject固有值zh_TW
dc.subjectfinite element methoden
dc.subjecteigenvalueen
dc.title有限元素法之固有值問題在多邊形鼓膜上之誤差分析zh_TW
dc.titleThe finite element method of the eigenvalue problem for the analysis of error with polygonal membraneen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宜良(I-Liang Chern),王偉成(Wei-Cheng Wang)
dc.subject.keyword有限元素法,固有值,zh_TW
dc.subject.keywordfinite element method,eigenvalue,en
dc.relation.page27
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
249.85 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved