Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖(Hsi-Sheng Goan)
dc.contributor.authorKuan-Liang Liuen
dc.contributor.author劉冠良zh_TW
dc.date.accessioned2021-06-13T04:29:31Z-
dc.date.available2007-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citation[1] Gerardo Adesso, Alessio Serafini, and Fabrizio Illuminati. Extremal entanglement
and mixedness in continuous variable systems. Phys. Rev. A, 70:022318,
(2004).
[2] H. J. Carmichael. Statistical Methods in Quantum Optics 1. Springer.
[3] Andrea Donarini. Dynamics of Shuttle Devices. PhD thesis, Technical University
of Denmark, (2004).
[4] Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller. Inseparability criterion for
continuous variable systems. Phys. Rev. Lett., 84(12):12, (2000).
[5] J. Eisert and M. B. Plenio. Introduction to the basics of entanglement theory in
continuous-variable systems. Int. J. Quant. Inf., 1:479, (2003).
[6] A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and
E. S. Polzik. Unconditional quantum teleportation. Science, 282:706, (1998).
[7] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner. Distribution functions
in physcis: fundamentals. Phys. Rep., 106:121, (1984).
[8] B. L. Hu, Juan Pablo Paz, and Yuhong Zhang. Quantum brownian motion in
a general environment: Exact master equation with nonlocal dissipation and
colored noise. Phys. Rev. D, 45(8):2843, (1992).
[9] Juan Pablo Paz and Wojciech Hubert Zurek. Environment-induced decoherence
and the transition from quantum to classical. e-Print quant-ph/0010011.
[10] M. B. Plenio, J. Hartley, and J. Eisert. Dynamics and manipulation of entanglement
in coupled harmonic systems with many degrees of freedon. New Journal
of Physics, 6(36), (2004).
[11] Jakub S Prauzner-Bechcicki. Two-mode squeezed vacuum state coupled to the
common thermal reservoir. J. Phys. A, 37:L173–L181, (2004).
[12] J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley, (1994).
[13] Wolfgang P. Schleich. Quantum Optics in Phase Space. WILEY-VCH, (2001).
[14] R. Simon. Peres-horodecki separability criterion for continuous variable systems.
Phys. Rev. Lett., 84(12):2726, (2000).
[15] G. Vidal and R. F. Werner. Computable measure of entanglement. Phys. Rev.
A, 65:032314, (2002).
[16] R. F. Werner. Quantum states with einstein-podolsky-rosen correlations admitting
a hidden-variable model. Phys. Rev. A, 40:4277, (1989).
[17] E. Wigner. On the quantum correction for thermodynamics equilibrium. Phys.
Rev., 40:749, (1932).
[18] William K. Wootters. Entanglement of formation of an arbitrary state of two
qubits. Phys. Rev. Lett., 80:10, (1998).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33212-
dc.description.abstract量子糾纏態在量子傳輸及量子通訊上扮演極為重要的角色。因此探討開放系統之量子糾纏態隨時間的動力演變是現今一個重要的課題。我們假設四個相關之奈米力學開放系統模型, 並僅使用微擾法導出各別量子系統之non-Markovian master equation。然而在之前的文獻中大都使用Markovian 或rotating-wave 近似法來處理問題, 但non-Markovian 對於真實系統的描述更貼近於實驗觀察。
因此我們採用non-Markovian 來處理我們的問題。從此些方程出發, 我們使用two-mode squeezed vacuum state 為我們的初始態並引用logarithmic negativity來定義量子糾纏的程度。我們發現在完全沒有環境作用的情況下, 量子糾纏隨時間的演變為週
期性振盪或維持定值。但若考慮環境的影響, 量子糾纏將會隨時間而遞減且週期性現象會逐漸消失。當環境與系統間的作用越強時, 量子糾纏存在的時間越短。我們發現當兩個系統與同一環
境作用下之情況量子糾纏態存在的時間遠比兩個系統各自與不同的環境作用來得久。我們也發現原本沒有糾纏性質的量子態可透過系統間的交互作用或與同一環境作用而產生量子糾纏。此
外, 在我們所採用的參數條件下(低溫及低系統振盪頻率下), Markovian 及rotating-wave 近似法不能獲得良好的近似結果, 因此以non-Markovian 來處理此類系統是必需且必要的。
zh_TW
dc.description.abstractQuantum entangled states play a crucial role in the quantum teleportation and quantum information science, hence the research of the dynamics of entanglement has
become an important topic and has attracted much attention recently. We use perturbative method to derive non-Markovian master equations, which were derived in
the literature before by other extra approximations such as rotating-wave and Markovian approximations, of four different but related models of the open nanomechanical
systems respectively. Markovian approximation is close to physical phenomena only under the long time regime so we use the non-Markovian instead of Markovian approximation
to deal with our models. We use two-mode squeezed vacuum state as our initial entangled state and use the definition of logarithmic negativity to quantify the
degree of entanglement. We find that the dynamics of quantum entanglement varies periodically or maintains constant under environment free condition. However, under
the influence of environment, entanglement will decrease with time and the periodic or revival behaviors dies out gradually. As the interaction between the environment
and system increases, the time span during which entanglement exists decrease. We find that the entanglement can be sustained much longer when two subsystems are coupled to a common bath than respectively to independent reservoirs. Furthermore, we find that a separable state can become entangled through the interaction of two subsystems or coupling to a common bath. We also find that under some conditions
(e.g. at low temperature or low system vibration frequency) Markovian and rotatingwave approximations are not the good approximations. So non-Markovian case is
essential in order to obtain the accurate results of the system's entanglement time evolution.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:29:31Z (GMT). No. of bitstreams: 1
ntu-95-R93222048-1.pdf: 2345755 bytes, checksum: ba8a5716d5ebc37e09650ed66d7ba0fa (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝....................................................iii
摘要.....................................................iv
Abstract..................................................v
Introduction..............................................1
1 The Basic Concepts......................................3
1.1 Open Quantum System.................................3
1.2 Interaction Picture.................................4
1.3 Wigner Function.....................................5
1.3.1 Mathematical Properties of Quasi-Probability
Distribution..................................6
1.3.2 Wigner Distribution . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Properties of Wigner Function . . . . . . . . . . . . . . . . . . 8
1.3.4 Weyl-Wigner Correspondence . . . . . . . . . . . . . . . . . . 10
1.4 Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Quantification of Quantum Entanglement . . . . . . . . . . . 13
1.4.2 Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Negativity and Logarithmic Negativity . . . . . . . . . . . . . 14
2 Master Equations for Four Models 16
2.1 The General Form of Perturbative Master equation . . . . . . . . . . 17
2.2 Perturbative Master Equation of Quantum Brownian Motion . . . . . 19
2.3 Model A: Two Systems Couple to Their Respective Reservoirs . . . . 22
2.4 Model B: Two Interactive Systems Couple to Their Respective Reservoirs 25
2.5 Model C: Two Systems Couple to the Same Reservoir . . . . . . . . . 27
2.6 Model D: Two Interactive Systems Couple to the Same Reservoir . . 30
3 Fokker-Planck Equations for Four Models 32
3.1 Fokker-Planck Equation of Quantum Brownian Motion . . . . . . . . 33
3.2 Model A: Two Systems Couple to Respective Reservoirs . . . . . . . 34
3.3 Model B: Two Interactive Systems Couple to Respective Reservoirs . 35
3.4 Model C: Two Systems Couple to the Same Reservoirs . . . . . . . . 37
3.5 Model D: Two Interactive Systems Couple to the Same Reservoir . . 37
4 Discussion 39
4.1 Physical Frequency and Renormalized Frequency . . . . . . . . . . . 39
4.2 The Coefficients of Master Equations for Four Models . . . . . . . . . 41
4.2.1 Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Numerical Results of Coefficients . . . . . . . . . . . . . . . . 42
4.3 Dynamics of Entanglement for Four Models . . . . . . . . . . . . . . 47
4.3.1 Covariance Matrix and Symplectic Eigenvalues . . . . . . . . . 47
4.3.2 Two-mode Squeezed State . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Numerical Analysis of Dynamics of Entanglement . . . . . . . 50
4.4 Dynamics of Entanglement for Model A and C in the Markovian Approximation
and RWA . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Model A and C in the Markovian Approximation . . . . . . . 68
4.4.2 Model A and C in the RWA-Markovian Approximation . . . . 71
4.4.3 Numerical Analysis of Dynamics of Entanglement in the Markovian
Approximation and RWA . . . . . . . . . . . . . . . . . . 75
5 Conclusions 79
Bibliography 81
dc.language.isoen
dc.subject量子糾纏態zh_TW
dc.subject量子糾纏zh_TW
dc.subjecttwo-mode squeezed vacuum stateen
dc.subjectentanglementen
dc.subjectnon-Markovianen
dc.subjectMarkovianen
dc.subjectRWAen
dc.subjectlogarithmic negativityen
dc.title環境耦合下奈米力學系統之非馬可夫動力及量子糾纏現象zh_TW
dc.titleNON-MARKOVIAN DYNAMICS AND QUANTUM
ENTANGLEMENT OF NANOMECHANICAL SYSTEMS
COUPLED TO THERMAL RESERVOIRS
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇正耀,張志義
dc.subject.keyword量子糾纏態,量子糾纏,zh_TW
dc.subject.keywordentanglement,non-Markovian,Markovian,RWA,logarithmic negativity,two-mode squeezed vacuum state,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved