Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥
dc.contributor.authorSheng-Hung Yuen
dc.contributor.author余昇鴻zh_TW
dc.date.accessioned2021-06-13T04:28:00Z-
dc.date.available2007-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citation[1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett. 58, 2059 (1987)
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486 (1987)
[3] C.Kittel, Introduction to Solid State Physics, (John Wiley & Sons, New York, (1996)
[4] E. Yablonovitch, “Photonic crystals: semiconductor of light”, Scientific American December, 47 (2001)
[5] K. M. Ho, C. T. Chan and C. M. Soukolis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev Lett. 65, 315 (1990)
[6] Pieere R. Villeneuve, Shanhui Fan, J. D. Joannopoulous, “Microcavities in photonic crystals : mode symmetry, tenability, and coupling efficiency”, Phys. Rev. B, 54, 7837 (1996)
[7] K. M. Leung and Y. F. Liu, “Photonic Band Structures: the Plane-Wave Method”, Phys. RevB. 41, 10188 (1990)
[8] S. Guo and S. Albin, “Simple Plane Wave Implementation for Photonic Crystal Calculations”, Opt. Express, 11, 167 (2003)
[9] Kane S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media”, IEEE Trans. Antennas Propag., 14, 302 (1966)
[10] J. P. Berenger, “A Perfectly Matched Layer for The absorption of Electromagnetic Wave”, J. Comput. Phys., 114, 185 (1994)
[11] 林振華, 電磁場與天線分析:使用時域有限差分法(FDTD), 全華科技圖書股份有限公司
[12] 欒丕綱 陳啟昌, 光子晶體:從蝴蝶翅膀到奈米光子學, 五南圖書出版股份有限公司
[13] 王謀賢, 砷化鎵光子晶體共振腔研究, 國立中央大學光電科學研究所碩士論文(2005)
[14] A. Lavrinenko et al “Comprehensive FDTD modeling of potonic crystal waveguide components”, Opt. Express, 234, 3231 (2004)
[15] Karri Varis “ Computational methods for finite thickness photonic crystals”, Helsinki University of TechnologyDepartment of Electrical and Communications Engineering Optoelectronics Lab.
[16] S. Shi, C. Chen, and Dennis W. Prather “ Plane-wave expansion method for calculating band structure of photonic crystal slabs
with perfectly matched layers”, J. Opt. Soc. Am. A, 21, 1769 (2004)
[17] Cécile Jamois et al ” Silicon-Based Photonic Crystal Slabs: Two Concepts” IEEE J. Quantum. Electron. , 38,
805 (2002)
[18] D. Cassagne , C. Jouanin, and D. Bertho, “Hexagonal Photonic-Band-Gap Structures” , Phys. Rev. B, 53, 7134 (1996)
[19] J. D. Joannopoulos, P. R. Villeneuve and S. Fan “Photonic crystals: Putting a new twist on light,” Nature, 386, 143 (1997)
[20] A. Mekis, J. C. Chen, I. Kurland, S. Fan J. D. Joannopoulos and P. R. Villeneuve, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787 (1996)
[21] S. Fan, J. D. Joannopoulos, P. R. Villeneuve, H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960 (1998)
[22] M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas and J.D. Joannopoulos
“An all-dielectric coaxial waveguide,” Science 289, 415 (2000)
[23] R. D. Meade et al, “Novel applications of photonic band gap material: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753(1994)
[24] S. G. Johnson et al, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1885 (1998)
[25] P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Bernnan, and B. E. Hammons, “Optical properties of two-dimensional photonic latticsfabricated as honey comb nanostructures,” Appl. Phys. Lett. 64, 687 (1994)
[26] S. G. Johnson, S. Fan, J. D. Joannopoulos, P. R. Villeneuve, “Guided modes in photonic crystal slabs,” Phys. Rev. B. 60, 651 (1999)
[27] J. S. Foresi et al, “Photonic-band gap microcavities in optical waveguides,” Nature 390, 143 (1997)
[28] S. Kuchinsky, D. C. Allan, N. F. Borrelli, and J. –C. Cotteverte, “3D localization in a channel waveguide in a phontonic crystal with 2D periodicity,” Opt. Commun. 175, 147 (2000)
[29] J. D. Joannopoulos, P. R. Villeneuve, Photonic Crystal: The Road from Theory to Practice, Kluwer Academic Publishers (2003)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33177-
dc.description.abstract本文第一部分主要目的是探討三維三角排列平板光子晶體的能帶結構圖,我們利用平面波展開法(Plane Wave Expansion Method)來探討光子晶體在TE Mode和TE Mode的能帶關係,並嘗試藉由改變平板厚度、背景介電質係數、介電質圓柱半徑或空氣圓柱半徑大小來探討不同參數對於帶隙大小的影響跟其物理性質。
第二部分我們在平板光子晶體中製造出一線缺陷,則可以得到光子晶體光波導。我們先利用平面波展開法計算光波導之能帶結構圖,而由計算模擬結果我們可以得知在原本平板的帶隙範圍內,本來並沒有傳導模態的存在但因為線缺陷的關係,使得帶隙範圍內因而產生了傳導模態,此一結果和二維相同結構相同,證明了三維光波導一樣也能傳導光波。再來我們利用有限時域差分法(Finite Difference Time Domain)軟體來分析三維波導之頻譜分布圖及場形傳播圖,由計算結果可以得知光波在三維結構中和在二維結構中傳播最大的不同是在能量損失的差別,三維結構對光的侷限性不若二維結構來得好,但是光波在在三維結構中依然能順利導通。
zh_TW
dc.description.abstractThe purposes of this thesis are two fold. First, the band structure of three-dimensional photonic crystal slab is investigated. By using plane wave expansion method, we calculate the band structure of the three-dimensional photonic crystal slab in a triangular array with the dielectric or air rods. Changing the thickness of the slab, the background material and the radius of the dielectric or air rods control the bandwidth at the central frequency of the photonic band gap.
Second, removing one row of rods can create a photonic crystal waveguide. The light wave at frequencies in the band gap can be confined inside the waveguide. We calculate the band structure of the photonic crystal waveguide by using the plane wave expansion method. We can find that removing the row of the rods can create the photonic crystal waveguide with guided modes inside the gap. Then, we use the finite difference time domain method to calculate the spectrum and field distribution of the waveguide. In our simulation, the results show that the energy loss in 3D waveguide is more than that in 2D waveguide.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:28:00Z (GMT). No. of bitstreams: 1
ntu-95-R93543053-1.pdf: 3469938 bytes, checksum: 809da03ae0f123c1ff3558a8e5f5950c (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 緒 論
1-1 研究動機…………….………………………………………1
1-2 光子晶體介紹與應用.………………………………………2
1-3 主要文獻回顧……….………………………………………3
1-3.1 光子晶體能帶………………………………………….3
1-3.2 平面波展開法………………………………………….4
1-3.3 有限時域差分法……………………………………….4
第二章 理論分析
2-1 數值方法介紹……………………………………………….6
2-2 固態物理基本理論………………………………………….7
2-3光子晶體理論推導…………………………………………10
2-3.1 晶體材料分佈…………………………………………11
2-3.2 平面波展開法…………………………………………13
第三章 有限時域差分法…………………………………18
第四章 三維光子晶體能帶分析
4-1 三維平板光子晶體能帶結構……………………………..25
4-1.1 光錐(Light Cone)…………………………………….25
4-1.2 收斂性分析…………………………………………26
4-2 數值模擬結果……………………………………………27
4-3 平板厚度對於帶隙的影響………………………………30
4-4 背景為固態介電質之平板………………………………37
4-5 空氣孔柱半俓對帶隙的影響……………………………38
4-6 介電質圓柱成三角晶格排列之平板光子晶體能帶分…43
第五章 三維光子晶體波導分析
5-1 光子晶體波導簡介………………………………………47
5-2 利用平面波展開法分析波導之能帶結構圖……………48
5-3 FDTD軟體介紹………………………………………….52
5-4 利用FDTD軟體分析光子晶體三角晶格波導元件……53
第六章 結論與未來展望…………………………….66
參考文獻……………………………………………….68
dc.language.isozh-TW
dc.subject光子晶體zh_TW
dc.subjectphotonic crystalen
dc.title三維光子晶體帶隙分析及波傳特性研究zh_TW
dc.titleBand Gap Analysis and Light Propagation Properties of Three Dimensional Photonic Crystalsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊誠,黃家健,許惠貞
dc.subject.keyword光子晶體,zh_TW
dc.subject.keywordphotonic crystal,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved