請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33168
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳蕙芬(Whi-Fin Wu) | |
dc.contributor.author | Chi-Hsin Huang | en |
dc.contributor.author | 黃吉心 | zh_TW |
dc.date.accessioned | 2021-06-13T04:27:38Z | - |
dc.date.available | 2008-07-29 | |
dc.date.copyright | 2006-07-29 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-20 | |
dc.identifier.citation | 1. 江雅鈴. 2000. Bacillus subtilis及Salmonella typhimurium之ClpQ和ClpY同源蛋白的基因選殖與確認. (農業化學研究所碩士論文)
2. 李宜穎. 2000. 以酵母菌雙雜交系統進行大腸桿菌ClpYQ蛋白酶之小分子單元體間及專一性基質相互作用之研究. (農業化學研究所碩士論文) 3. 余建泓. 2004. 大腸桿菌ClpQ蛋白質的C端為負責其單元體間交互作用的區段. (農業化學研究所碩士論文) 4. 施如珊. 2004. 大腸桿菌熱休克蛋白ClpY I domain之突變蛋白及其專一性基質辨識之研究. (農業化學研究所碩士論文) 5. 郭美雪. 2001. 大腸桿菌中ClpYQ蛋白酶對RcsA的調控. (農業化學研究所碩士論文) 6. 陳盟靜. 2002. 以酵母菌雙雜交系統分析大腸桿菌ClpYQ蛋白酶中ClpQ/ClpQ次單元體的互相作用並尋找和ClpY互相作用的分子.(農業化學研究所碩士論文) 7. 張道遠. 2004. 分析大腸桿菌ClpYQ蛋白酶之功能性羧基端. (農業化學研究所碩士論文) 8. Azim, M. K., Goehring, W., Song, H. K., Ramachandran, R., Bochtler, M. & Goettig, P. (2005). Characterization of the HslU chaperone affinity for HslV protease. Protein Sci 14, 1357-1362. 9. Becker, J. & Brendel, M. (1996). Molecular characterization of the xerC gene of Lactobacillus leichmannii encoding a site-specific recombinase and two adjacent heat shock genes. Curr Microbiol 32, 232-236. 10. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. (1997). Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci U S A 94, 6070-6074. 11. Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D. & Huber, R. (2000). The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800-805. 12. Bochtler, M., Song, H. K., Hartmann, C., Ramachandran, R. & Huber, R. (2001). The quaternary arrangement of HslU and HslV in a cocrystal: a response to Wang, Yale. J Struct Biol 135, 281-293. 13. Bogyo, M., McMaster, J. S., Gaczynska, M., Tortorella, D., Goldberg, A. L. & Ploegh, H. (1997). Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A 94, 6629-6634. 14. Botos, I., Melnikov, E. E., Cherry, S. & other authors (2004). Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol 146, 113-122. 15. Brill, J. A., Quinlan-Walshe, C. & Gottesman, S. (1988). Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol 170, 2599-2611. 16. Bukau, B. (1993). Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9, 671-680. 17. Burton, R. E., Baker, T. A. & Sauer, R. T. (2005). Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol 12, 245-251. 18. Chandu, D. & Nandi, D. (2004). Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation. Res Microbiol 155, 710-719. 19. Chen, Y. J., Yu, X. & Egelman, E. H. (2002). The hexameric ring structure of the Escherichia coli RuvB branch migration protein. J Mol Biol 319, 587-591. 20. Chuang, S. E., Burland, V., Plunkett, G., 3rd, Daniels, D. L. & Blattner, F. R. (1993). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134, 1-6. 21. Couvreur, B., Wattiez, R., Bollen, A., Falmagne, P., Le Ray, D. & Dujardin, J. C. (2002). Eubacterial HslV and HslU subunits homologs in primordial eukaryotes. Mol Biol Evol 19, 2110-2117. 22. Dougan, D. A., Mogk, A. & Bukau, B. (2002). Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59, 1607-1616. 23. Dougan, D. A., Mogk, A., Zeth, K., Turgay, K. & Bukau, B. (2002). AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 529, 6-10. 24. Ebel, W., Skinner, M. M., Dierksen, K. P., Scott, J. M. & Trempy, J. E. (1999). A conserved domain in Escherichia coli Lon protease is involved in substrate discriminator activity. J Bacteriol 181, 2236-2243. 25. Ebel, W. & Trempy, J. E. (1999). Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions To activate its own expression. J Bacteriol 181, 577-584. 26. Evangelista, C., Lockshon, D. & Fields, S. (1996). The yeast two-hybrid system: prospects for protein linkage maps. Trends Cell Biol 6, 196-199. 27. Frees, D., Thomsen, L. E. & Ingmer, H. (2005). Staphylococcus aureus ClpYQ plays a minor role in stress survival. Arch Microbiol 183, 286-291. 28. Frickey, T. & Lupas, A. N. (2004). Phylogenetic analysis of AAA proteins. J Struct Biol 146, 2-10. 29. Ge, Y., Old, I. G., Saint Girons, I. & Charon, N. W. (1997). Molecular characterization of a large Borrelia burgdorferi motility operon which is initiated by a consensus sigma70 promoter. J Bacteriol 179, 2289-2299. 30. Gille, C., Goede, A., Schloetelburg, C., Preissner, R., Kloetzel, P. M., Gobel, U. B. & Frommel, C. (2003). A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol 326, 1437-1448. 31. Goldberg, A. L., Moerschell, R. P., Chung, C. H. & Maurizi, M. R. (1994). ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol 244, 350-375. 32. Goldberg, A. L., Akopian, T. N., Kisselev, A. F., Lee, D. H. & Rohrwild, M. (1997). New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 378, 131-140. 33. Gottesman, S., Trisler, P. & Torres-Cabassa, A. (1985). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162, 1111-1119. 34. Gottesman, S., Clark, W. P. & Maurizi, M. R. (1990). The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate. J Biol Chem 265, 7886-7893. 35. Gottesman, S. & Stout, V. (1991). Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5, 1599-1606. 36. Gottesman, S. & Maurizi, M. R. (1992). Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56, 592-621. 37. Gottesman, S., Clark, W. P., de Crecy-Lagard, V. & Maurizi, M. R. (1993). ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem 268, 22618-22626. 38. Gottesman, S. (1996). Proteases and their targets in Escherichia coli. Annu Rev Genet 30, 465-506. 39. Gottesman, S., Maurizi, M. R. & Wickner, S. (1997). Regulatory subunits of energy-dependent proteases. Cell 91, 435-438. 40. Gottesman, S., Wickner, S. & Maurizi, M. R. (1997). Protein quality control: triage by chaperones and proteases. Genes Dev 11, 815-823. 41. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. (1998). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338-1347. 42. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121-4130. 43. Huang, H. & Goldberg, A. L. (1997). Proteolytic activity of the ATP-dependent protease HslVU can be uncoupled from ATP hydrolysis. J Biol Chem 272, 21364-21372. 44. Kanemori, M., Nishihara, K., Yanagi, H. & Yura, T. (1997). Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 179, 7219-7225. 45. Kanemori, M., Yanagi, H. & Yura, T. (1999). The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J Bacteriol 181, 3674-3680. 46. Kang, M. S., Lim, B. K., Seong, I. S., Seol, J. H., Tanahashi, N., Tanaka, K. & Chung, C. H. (2001). The ATP-dependent CodWX (HslVU) protease in Bacillus subtilis is an N-terminal serine protease. Embo J 20, 734-742. 47. Karata, K., Verma, C. S., Wilkinson, A. J. & Ogura, T. (2001). Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Mol Microbiol 39, 890-903. 48. Katayama, T., Kubota, T., Takata, M., Akimitsu, N. & Sekimizu, K. (1996). Disruption of the hslU gene, which encodes an ATPase subunit of the eukaryotic 26S proteasome homolog in Escherichia coli, suppresses the temperature-sensitive dnaA46 mutation. Biochem Biophys Res Commun 229, 219-224. 49. Katayama-Fujimura, Y., Gottesman, S. & Maurizi, M. R. (1987). A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem 262, 4477-4485. 50. Kessel, M., Wu, W., Gottesman, S., Kocsis, E., Steven, A. C. & Maurizi, M. R. (1996). Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett 398, 274-278. 51. Khattar, M. M. (1997). Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS Lett 414, 402-404. 52. Kim, D. Y. & Kim, K. K. (2003). Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278, 50664-50670. 53. Knipfer, N., Seth, A., Roudiak, S. G. & Shrader, T. E. (1999). Species variation in ATP-dependent protein degradation: protease profiles differ between mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Gene 231, 95-104. 54. Kuo, M. S., Chen, K. P. & Wu, W. F. (2004). Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology 150, 437-446. 55. Kwon, A. R., Kessler, B. M., Overkleeft, H. S. & McKay, D. B. (2003). Structure and reactivity of an asymmetric complex between HslV and I-domain deleted HslU, a prokaryotic homolog of the eukaryotic proteasome. J Mol Biol 330, 185-195. 56. Kwon, A. R., Trame, C. B. & McKay, D. B. (2004). Kinetics of protein substrate degradation by HslUV. J Struct Biol 146, 141-147. 57. Lee, Y. Y., Chang, C. F., Kuo, C. L., Chen, M. C., Yu, C. H., Lin, P. I. & Wu, W. F. (2003). Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J Bacteriol 185, 2393-2401. 58. Levchenko, I., Smith, C. K., Walsh, N. P., Sauer, R. T. & Baker, T. A. (1997). PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell 91, 939-947. 59. Li, X., Keskin, O., Ma, B., Nussinov, R. & Liang, J. (2004). Protein-protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol 344, 781-795. 60. Lin, M. & Li, Y. (2001). PCR genome walking identifies a genetic locus comprising two heat shock genes (hslV and hslU) from Leptospira borgpetersenii serovar hardjobovis. Curr Microbiol 43, 452-456. 61. Lu, H. H., Chen, C. M. & Yang, I. H. (1998). Cross-reference weighted least square estimates for positron emission tomography. IEEE Trans Med Imaging 17, 1-8. 62. Luban, J. & Goff, S. P. (1995). The yeast two-hybrid system for studying protein-protein interactions. Curr Opin Biotechnol 6, 59-64. 63. Lupas, A., Zwickl, P. & Baumeister, W. (1994). Proteasome sequences in eubacteria. Trends Biochem Sci 19, 533-534. 64. Lupas, A. N. & Martin, J. (2002). AAA proteins. Curr Opin Struct Biol 12, 746-753. 65. Ma, B., Elkayam, T., Wolfson, H. & Nussinov, R. (2003). Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci U S A 100, 5772-5777. 66. Missiakas, D., Schwager, F., Betton, J. M., Georgopoulos, C. & Raina, S. (1996). Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. Embo J 15, 6899-6909. 67. Mizusawa, S. & Gottesman, S. (1983). Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci U S A 80, 358-362. 68. Munavar, H., Zhou, Y. & Gottesman, S. (2005). Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. J Bacteriol 187, 4739-4751. 69. Nakasono, S. & Saiki, H. (2000). Effect of ELF magnetic fields on protein synthesis in Escherichia coli K12. Radiat Res 154, 208-216. 70. Nakata, Y., Tang, X. & Yokoyama, K. K. (1997). Preparation of competent cells for high-efficiency plasmid transformation of Escherichia coli. Methods Mol Biol 69, 129-137. 71. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. (1999). AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9, 27-43. 72. Park, E., Rho, Y. M., Koh, O. J. & other authors (2005). Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem 280, 22892-22898. 73. Ramachandran, R., Hartmann, C., Song, H. K., Huber, R. & Bochtler, M. (2002). Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc Natl Acad Sci U S A 99, 7396-7401. 74. Rohrwild, M., Coux, O., Huang, H. C., Moerschell, R. P., Yoo, S. J., Seol, J. H., Chung, C. H. & Goldberg, A. L. (1996). HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci U S A 93, 5808-5813. 75. Rohrwild, M., Pfeifer, G., Santarius, U., Muller, S. A., Huang, H. C., Engel, A., Baumeister, W. & Goldberg, A. L. (1997). The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol 4, 133-139. 76. Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21, 289-296. 77. Segal, G. & Ron, E. Z. (1998). Regulation of heat-shock response in bacteria. Ann N Y Acad Sci 851, 147-151. 78. Seol, J. H., Yoo, S. J., Shin, D. H., Shim, Y. K., Kang, M. S., Goldberg, A. L. & Chung, C. H. (1997). The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur J Biochem 247, 1143-1150. 79. Seong, I. S., Oh, J. Y., Yoo, S. J., Seol, J. H. & Chung, C. H. (1999). ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett 456, 211-214. 80. Seong, I. S., Oh, J. Y., Lee, J. W., Tanaka, K. & Chung, C. H. (2000). The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett 477, 224-229. 81. Seong, I. S., Kang, M. S., Choi, M. K., Lee, J. W., Koh, O. J., Wang, J., Eom, S. H. & Chung, C. H. (2002). The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J Biol Chem 277, 25976-25982. 82. Shin, D. H., Yoo, S. J., Shim, Y. K., Seol, J. H., Kang, M. S. & Chung, C. H. (1996). Mutational analysis of the ATP-binding site in HslU, the ATPase component of HslVU protease in Escherichia coli. FEBS Lett 398, 151-154. 83. Slominska, M., Wahl, A., Wegrzyn, G. & Skarstad, K. (2003). Degradation of mutant initiator protein DnaA204 by proteases ClpP, ClpQ and Lon is prevented when DNA is SeqA-free. Biochem J 370, 867-871. 84. Smith, C. K., Baker, T. A. & Sauer, R. T. (1999). Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A 96, 6678-6682. 85. Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L. & Huber, R. (2000). Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci U S A 97, 14103-14108. 86. Song, H. K., Bochtler, M., Azim, M. K., Hartmann, C., Huber, R. & Ramachandran, R. (2003). Isolation and characterization of the prokaryotic proteasome homolog HslVU (ClpQY) from Thermotoga maritima and the crystal structure of HslV. Biophys Chem 100, 437-452. 87. Sousa, M. C., Trame, C. B., Tsuruta, H., Wilbanks, S. M., Reddy, V. S. & McKay, D. B. (2000). Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633-643. 88. Sousa, M. C. & McKay, D. B. (2001). Structure of Haemophilus influenzae HslV protein at 1.9 A resolution, revealing a cation-binding site near the catalytic site. Acta Crystallogr D Biol Crystallogr 57, 1950-1954. 89. Sousa, M. C., Kessler, B. M., Overkleeft, H. S. & McKay, D. B. (2002). Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J Mol Biol 318, 779-785. 90. Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D. & Gottesman, S. (1991). RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173, 1738-1747. 91. Trame, C. B. & McKay, D. B. (2001). Structure of Haemophilus influenzae HslU protein in crystals with one-dimensional disorder twinning. Acta Crystallogr D Biol Crystallogr 57, 1079-1090. 92. Transy, C. & Legrain, P. (1995). The two-hybrid: an in vivo protein-protein interaction assay. Mol Biol Rep 21, 119-127. 93. Wang, J., Hartling, J. A. & Flanagan, J. M. (1998). Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. J Struct Biol 124, 151-163. 94. Wang, J. (2001). A corrected quaternary arrangement of the peptidase HslV and atpase HslU in a cocrystal structure. J Struct Biol 134, 15-24. 95. Wang, J., Song, J. J., Franklin, M. C. & other authors (2001). Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177-184. 96. Wang, J., Song, J. J., Seong, I. S., Franklin, M. C., Kamtekar, S., Eom, S. H. & Chung, C. H. (2001). Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107-1116. 97. Wang, J. (2003). A second response in correcting the HslV-HslU quaternary structure. J Struct Biol 141, 7-8. 98. Wang, J. (2004). Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J Struct Biol 148, 259-267. 99. Wang, J., Rho, S. H., Park, H. H. & Eom, S. H. (2005). Correction of X-ray intensities from an HslV-HslU co-crystal containing lattice-translocation defects. Acta Crystallogr D Biol Crystallogr 61, 932-941. 100. Wehland, M. & Bernhard, F. (2000). The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275, 7013-7020. 101. Wu, W. F., Zhou, Y. & Gottesman, S. (1999). Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J Bacteriol 181, 3681-3687. 102. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. (2003). Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 278, 50182-50187. 103. Yoo, S. J., Seol, J. H., Kang, M. S. & Chung, C. H. (1996). Poly-L-lysine activates both peptide and ATP hydrolysis by the ATP-dependent HslVU protease in Escherichia coli. Biochem Biophys Res Commun 229, 531-535. 104. Yoo, S. J., Seol, J. H., Shin, D. H., Rohrwild, M., Kang, M. S., Tanaka, K., Goldberg, A. L. & Chung, C. H. (1996). Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem 271, 14035-14040. 105. Yoo, S. J., Seol, J. H., Seong, I. S., Kang, M. S. & Chung, C. H. (1997). ATP binding, but not its hydrolysis, is required for assembly and proteolytic activity of the HslVU protease in Escherichia coli. Biochem Biophys Res Commun 238, 581-585. 106. Yoo, S. J., Shim, Y. K., Seong, I. S., Seol, J. H., Kang, M. S. & Chung, C. H. (1997). Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease. FEBS Lett 412, 57-60. 107. Yoo, S. J., Kim, H. H., Shin, D. H., Lee, C. S., Seong, I. S., Seol, J. H., Shimbara, N., Tanaka, K. & Chung, C. H. (1998). Effects of the cys mutations on structure and function of the ATP-dependent HslVU protease in Escherichia coli. The Cys287 to Val mutation in HslU uncouples the ATP-dependent proteolysis by HslvU from ATP hydrolysis. J Biol Chem 273, 22929-22935. 108. Yura, T., Nagai, H. & Mori, H. (1993). Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47, 321-350. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33168 | - |
dc.description.abstract | 大腸桿菌的ClpY/HslU為一種AAA 蛋白質(ATPase associated with various cellular activities),是具有ATPase活性的伴隨蛋白(chaperone);ClpQ/HslV則是一種具胜肽酶(peptidase)活性的蛋白質。ClpY能與ClpQ形成具有蛋白酶活性的的多元體ClpYQ,其中ClpY扮演辨識基質並藉著消耗能量將基質解開送入ClpQ的角色;再經由ClpQ胜肽酶分解基質;前人發現ClpYQ與真核生物中的26S proteasome是具有同源性的。在結構上ClpY是以六元體環狀的形式,與兩個同為環狀的六元體ClpQ所構成的十二元體結合來作用。
在近年來的研究中指出,從已有的結晶結構來預測ClpYQ的作用區域可能在ClpY的羧基端以及ClpQ六元環之間形成的空間。而在2002年亦有實驗發現,若將ClpY最後十個胺基酸逐漸去除時,ClpYQ蛋白酶會失去其分解胜肽的能力;並且也會逐漸失去形成ClpYQ多元體的能力;更進一步甚至影響ClpY其本身形成六元環的能力;導致ClpY無法與胜肽酶 ClpQ結合而進行作用,因此失去ClpYQ蛋白酶的活性。 本實驗從已有的結晶結構預測可能之ClpQ與ClpY之交互作用點:ClpQ E61及K28及各自對應點ClpY R440及L443。並使用分子生物技術的方法,分別在胺基酸位置E61及K28建構全長為175個胺基酸之ClpQ點突變株,先使用RcsA及SulA相關系統來分析建構之突變株是否能與ClpY或是前人建構之ClpY突變株形成ClpYQ蛋白酶的活性,再分別使用酵母菌雙雜交系統 (Yeast two-hybrid system)觀察ClpY與ClpQ之間的作用力,以期望了解ClpY 羧基端結合與活化ClpQ功能的關係。發現ClpY之羧基端就如同一把鑰匙,插入ClpQ與相鄰ClpQ間產生的之孔隙,並開啟 ClpQ 的活性。藉著 ClpQ 結構改變的作用力可以幫助其緊密結合。其ClpY羧基端本身於長度、電荷以及其胺基酸構形上皆有適當的要求,且ClpQ孔隙由大量正電荷胺基酸所構成。 | zh_TW |
dc.description.abstract | ATP-dependent proteolysis plays an essential role in controlling the levels of key regulatory proteins and in the elimination of abnormal polypeptides. These tasks are carried out by architecturally related ATP-dependent proteases such as the 26S proteasome in eukaryotes and two component protease, the ClpAP, ClpXP, and ClpYQ (HslUV) in archea and eubacteria. The clpYQ/hslVU operon in Escherichia coli encodes two heat shock proteins, the HslV/ClpQ peptidase and HslU/ClpY ATPase. Both ClpY and ClpQ self-assemble into a hexameric rings. Until now, two substrates RcsA and SulA of another ATP-dependent protease Lon, and RpoH, can be recognized by ClpY.
In the clpYQ complex, the ClpY and ClpQ central pores are aligned, and the proteolytic active sites are sequestered in an internal chamber of ClpQ, with access to this chamber restricted to small axial pore. The roles of translocate peptides from ClpY to ClpQ and how interaction of ClpY and ClpQ to initiate ClpQ activity are not clear. In the research of Seong et al, an insertion of ClpY C-terminal tails into pockets at the ClpQ-ClpQ interface in the ATP-bound state might cause an opening of the central pore of ClpQ peptidase for an access of unfolded polypeptide substrates into the ClpQ proteolytic chamber. The ClpY C-terminal tail is essential for its interaction with ClpQ and for an activation of the peptidase. With ClpY molecule, the last 7 amino acids sequence of ClpY is highly conserved, and the lacking of the last four amino acids, ClpY leads to ClpYQ inactive. In this study, from ClpYQ crystal structure, R440 and L443 in ClpY C-terminal are opposited to E61 and K28 in ClpQ. Moreover, ClpQ point mutants in the position E61, K28 were constructed. And these positions were substituted with other 19 Amino acids. Subsequently, two methods were used to funtionally assay the activation between ClpQ mutants and ClpY as well as ClpY C-terminal mutants in E.coli. The yeast two-hybrid system was used to analyze oligomerlization of mutants between ClpQ-ClpY and ClpQ-ClpQ. The aim of this study is to find the significance of E61 and K28 in ClpQ, and a relationship between an interaction and an activation of ClpY and ClpQ protease. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:27:38Z (GMT). No. of bitstreams: 1 ntu-95-R93623022-1.pdf: 1318322 bytes, checksum: fceb24dce8cf6bebda6c83d6c415f0fb (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要 7
Abstract 8 壹、前言 9 一、蛋白酶簡介 9 二、熱休克蛋白酶HslUV(ClpYQ)簡介 10 三、雙次元體ClpYQ 11 四、大腸桿菌ClpYQ蛋白酶之結構分析 12 五、大腸桿菌ClpYQ蛋白酶之基質 13 六、大腸桿菌ClpY羧基端與ClpQ之關係 15 七、研究動機及目的 17 貳、材料與方法 19 一、研究材料 19 1、實驗菌株及質體 19 (1)ClpYQ於細胞內之活性表現系統(Activation assay) 19 (2)酵母菌雙雜交系統(Interaction assay) 19 2、藥品及試劑 20 (1)相關酵素 20 (2)培養基 20 (3)實驗相關核酸引子 21 3、分析軟體 21 4、結構資料 21 二、實驗方法 21 1、質體製備與轉殖 21 (1)質體製備 22 Mini-preparation of plasmid DNA from bacteria(小量製備) 22 Midi-preparation of plasmid DNA from bacteria(大量製備) 22 (2)質體轉殖 22 限制酶(restriction enzyme )反應 22 DNA瓊脂膠體(agarose gel )電泳 22 DNA瓊脂膠體(agarose gel )電泳回收DNA 22 接合反應(DNA ligation ) 22 2、勝任細胞(competent cell)製備 23 MC1068(用於大量複製一般質體) 23 KC8(用於電穿孔法electroporation transformation) 23 3、轉形作用(transformation) 24 (1)E. coli transformation 24 Heat shock transformation 24 Electroporation transformation 24 TSS-Transformation(用於AC3112菌株之轉形) 25 4、ClpQ點突變基因之質體建構 26 (1)二次聚合酶連鎖反應(PCR, Polymerase chain reaction) 26 (2)選殖基因之質體製備(Cloning Technology) 28 pGilda(用於Yeast菌株之轉形) 28 pB42AD(用於Yeast菌株之轉形) 28 pBAD33(用於AC3112菌株之轉形) 28 5、ClpYQ於細胞內表現之活性測試(Activation assay) 29 (1)β-galactosidase活性測試 29 (2)MMS(Methyl methansulfonate)之抗性分析 30 6、酵母菌雙雜交系統報導基因之表現測試(Interaction assay) 31 (1)lacZ 表現:酵母菌β-galactosidase活性測試 31 (2)lacZ 表現:酵母菌X-gal測試 32 (3)leu2 表現:酵母菌生長測試 33 7、程式分析 33 3D結構之預測與分析 33 參、實驗結果 34 一、前人建構之ClpY羧基端之突變蛋白分析與整理 34 二、分析建構之ClpQ E61點突變蛋白 34 1、ClpQ E61突變蛋白之活性分析 35 (1)從β-galactosidase活性分析ClpQ E61突變蛋白與ClpY作用分 解RcsA的能力 35 (2)以MMS生長測試分析ClpQ E61突變蛋白與ClpY作用分解 SulA的能力 36 2、用Yeast two-hybrid分析建構的ClpQ E61突變蛋白與ClpY之間的交互作用力 36 3、用Yeast two-hybrid分析建構的ClpQ E61突變蛋白本身形成六元 體的能力 37 三、分析建構之ClpQ E61C點突變蛋白與前人建構之ClpY羧基端R440 之突變蛋白之間的活性與交互作用力 38 1、ClpQ E61C突變蛋白與ClpY羧基端R440突變蛋白之活性分析 38 2、用Yeast two-hybrid系統分析ClpQ E61C突變蛋白與ClpY羧基端R440突變蛋白之間的交互作用力 39 四、以建構之ClpQ E61C點突變蛋白與ClpY羧基端L443之突變蛋白進 一步分析活性與交互作用之關係 39 1、ClpQ E61C突變蛋白與ClpY羧基端L443突變蛋白之活性分析 39 2、用Yeast two-hybrid系統分析ClpQ E61C突變蛋白與ClpY羧基端 L443突變蛋白之間的交互作用力 40 五、分析建構之ClpQ K28點突變蛋白 41 1、ClpQ K28突變蛋白之活性分析 41 2、用Yeast two-hybrid分析建構的ClpQ K28突變蛋白與ClpY之間 的交互作用力 41 3、用Yeast two-hybrid分析建構的ClpQ K28突變株本身形成六元體 的能力 42 六、分析建構之ClpQ K28R點突變蛋白與前人建構之ClpY羧基端L443 之突變蛋白之間的活性表現 42 七、以結構軟體分析ClpQ蛋白之正電荷胺基酸分布位置 43 肆、討論 45 一、胺基酸E61在ClpQ蛋白質中扮演的意義 45 二、分析ClpQ E61與ClpY R440之間的關係 45 三、胺基酸K28在ClpQ蛋白質中扮演的意義 46 四、分析ClpQ K28與ClpY L443之間的關係 47 五、正電荷胺基酸在ClpYQ蛋白酶中的重要性 47 六、整理分析ClpQ與ClpY之間活性與交互作用的關係與重要性 48 七、結論 50 伍、參考文獻 52 陸、表 64 柒、圖 73 | |
dc.language.iso | zh-TW | |
dc.title | 大腸桿菌ClpQ與ClpY之交互作用與其蛋白酶之活化 | zh_TW |
dc.title | An interaction and an activation of ClpQ and ClpY protease in Escherichia coli | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃思蓴,張傳雄,蘇南維,洪傳揚 | |
dc.subject.keyword | 蛋白酶,熱休克,大腸桿菌,交互作用, | zh_TW |
dc.subject.keyword | ClpY,ClpQ,protease,Escherichia coli,chaperone,HslU,HslV,ATP-dependent,interaction, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。