請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33164
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝文陽 | |
dc.contributor.author | Yu-Te Lin | en |
dc.contributor.author | 林育德 | zh_TW |
dc.date.accessioned | 2021-06-13T04:27:29Z | - |
dc.date.available | 2006-07-25 | |
dc.date.copyright | 2006-07-25 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-20 | |
dc.identifier.citation | Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. (1995). Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506-509.
Bange, H. W., Rapsomanikis, S. & AnDreae, M. O. (1996). Nitrous oxide in coastal waters. Global Bioeochem Cycles 10, 197-207. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. (2006). GenBank. Nucleic Acids Res 34, D16-20. Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917. Braker, G., Fesefeldt, A. & Witzel, K.-P. (1998). Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64, 3769-3775. Braker, G., Zhou, J., Wu, L., Devol, A. H. & Tiedje, J. M. (2000). Nitrite reductase Genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol 66, 2096-2104. Braker, G. & Tiedje, J. M. (2003). Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl Environ Microbiol 69, 3476-3483. Brettar, I., Moore, E. R. B. & Höfle, M. G. (2001). Phylogeny and abundance of novel denitrifying bacteria isolated from the water column of the central Baltic Sea. Microb Ecol 42, 295-305. Brettar, I., Christen, R. & Hofle, M. G. (2002). Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol 52, 2211-2217. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. (1978). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801-4805. Brown, G. R., Sutcliffe, I. C. & Cummings, S. P. (2001). Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol 51, 67-72. Buck, J. D. (1982). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44, 992-993. Casella, S. & Payne, W. J. (1996). Potential of denitrifiers for soil environment protection. FEMS Microbiol Lett 140, 1-8. Chiu, C.-Y., Lee, S.-C., Chen, T.-H. & Tian, G. (2004). Denitrification associated N loss in mangrove soil. Nutr Cycl Agroecosyst 69, 185-189. Cochran, W. G. (1950). Estimation of bacterial densities by means of the “most probable number”. Biometrics 6, 105-116. Codispoti, L. A. (1995). Is the ocean losing nitrate? Nature 376, 724. Cohen, Y. & Gordon, L. I. (1979). Nitrous oxide production in the ocean. J Geophys Res 84, 347-353. Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO2, CH4, OCS, N2O, and NO). Microbiol Rev 60, 609-640. Corredor, J. E. & Morell, J. M. (1994). Nitrate depuration of secondary sewage effluents in mangrove sediments. Estuaries 17, 295-300. Corredor, J. E., Morell, J. M. & Bauza, J. (1999). Atmospheric nitrous oxide fluxes from mangrove sediments. Mar Poll Bull 38, 473-478. Coyne, M. S., Arunakumari, A., Averill, B. A. & Tiedje, J. M. (1989). Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol 55, 2924-2931. DeLong, E. F., Franks, D. G. & Alldredge, A. L. (1990). Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38, 924-934. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60-63 Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368-376. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 35, 22-33. Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. Fitch, W. M. (1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406-416. Fuhrman, J. A., McCallum, K. & Davis, A. A. (1993). Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59, 1294-1302. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P. & Bertrand, J.-C. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely haloptolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42, 568-576. Giovannoni, S. & Rappé, M. (2000). Marine nitrogen fixation. In: Microbial Ecology of the Oceans, pp. 387-426. Edited by D. L. Kirchman. Wiley, New York. Gorshkova, N. M., Ivanova, E. P., Sergeev, A. F., Zhukova, N. V., Alexeeva, Y., Wright, J. P., Nicolau, D. V., Mikhailov, V. V. & Christen, R. (2003). Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53, 2073-2078. Gregory, L. G., Karakas-Sen, A., Richardson, D. J. & Spiro, S. (2000). Detection of genes for membrane-bound nitrate reductase in nitrate-respiring bacteria and in community DNA. FEMS Microbiol Lett 183, 275-279. Gumaelius, L., Magnusson, G., Pettersson, B. & Dalhammar, G. (2001). Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51, 999-1006. Häggblom, M. M., Rivera, M. D. & Young, L. Y. (1996). Anaerobic degradation of halogenated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples. FEMS Microbiol Lett 144, 213-219. Hallin, S. & Lindgren, P.-E. (1999). PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65, 1652-1657. Hess, A., Zarda, B., Hahn, D., Haner, A., Stax, D., Hohener, P. & Zeyer, J. (1997). In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63, 2136-2141. Higgins D., Thompson J., Gibson T. Thompson J. D., Higgins D. G., Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. Höfle, M. G. (1992). Bacterioplankton community structure and dynamics after large-scale release of nonindigenous bacteria as revealed by low-molecular-weight-RNA analysis. Appl Environ Microbiol 58, 3387-3394. Hsueh, M.-L. & Lee, H.-H. (2000). Diversity and distribution of the mangrove forests in Taiwan. Wetlands Ecol Manage 8, 233-242. Hu, H.-Y., Lim, B.-R., Goto, N. & Fujie, K. (2001). Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47, 17-24. Huu, N. B., Denner, E. B. M., Ha Dang, T. C., Wanner, G. & Stan-Lotter, H. (1999). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49, 367-375. Ivanova, E., Sawabe, T., Gorshkova, N., Svetashev, V., Mikhailov, V., Nicolau, D. & Christen, R. (2001). Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51, 1027-1033. Ivanova, E. P., Flavier, S. & Christen, R. (2004). Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54, 1773-1788. Ivanova, E. P., Onyshchenko, O. M., Christen, R., Zhukova, N. V., Lysenko, A. M., Shevchenko, L. S., Buljan, V., Hambly, B. & Kiprianova, E. A. (2005). Oceanimonas smirnovii sp. nov., a novel organism isolated from the Black Sea. Syst Appl Microbiol 28, 131-136. Jayakumar, D. A., Francis, C. A., Naqvi, S. W. & Ward, B. B. (2004). Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea. Aquat Microb Ecol 34, 69-78. Jean, W. D., Shieh, W. Y. & Chiu, H.-H. (2006). Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae. Int J Syst Evol Microbiol 56, 899-905. Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism, pp.21-132. Edited by H. N. Munro. New York: Academic Press. Kim, B.-C., Park, J. R., Bae, J.-W., Rhee, S.-K., Kim, K.-H., Oh, J.-W. & Park, Y.-H. (2006). Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 56, 75-79. Kloos, K., Fesefeldt, A., Gliesche, C. G. & Bothe, H. (1995). DNA-probing indicates the occurrence of denitrification and nitrogen fixation genes in Hyphomicrobium. Distribution of denitrifying and nitrogen fixing isolates of Hyphomicrobium in a sewage treatment plant. FEMS Microbiol Ecol 18, 205-213. Knowles, R. (1982). Denitrification. Microbiol Rev 46, 43-70. Lane, D. J. (1991). 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, pp. 115-175. Edited by E. Stackbrandt & M. Goodfellow. Wiley, New York., Lemos, M. L., Toranzo, A. E. & Barja, J. L. (1985). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49, 1541-1543. Liu, X., Tiquia, S. M., Holguin, G., Wu, L., Nold, S. C., Devol, A. H., Luo, K., Palumbo, A. V., Tiedje, J. M. & Zhou, J. (2003). Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific Coast of Mexico. Appl Environ Microbiol 69, 3549-3560. MacDonell, M. T. & Colwell, R. R. (1985). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6, 171-182. Makemson, J. C., Fulayfil, N. R., Landry, W., Van Ert, L. M., Wimpee, C. F., Widder, E. A. & Case, J. F. (1997). Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47, 1034-1039. Michotey, V., Mejean, V. & Bonin, P. (2000). Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66, 1564-1571. Middelburg, J. J., Klaver, G., Nieuwenhuize, J., Markussel, R. M., Vlug, T., Jaco, F. & van der Nat, W. A. (1995). Nitrous oxide emissions from estuarine intertidal sediments. Hydrobiologia 311, 43-55. Middleburg, J. J., Soetaert, K., Herman, P. M. J. & Heip, C. H. R. (1996). Denitrification in marine sediments: A model study. Global Biogeochem Cycles 10, 661-673. Morell, J. M. & Corredor, J. E. (1993). Sediment nitrogen trapping in a mangrove lagoon. Estuar Coast Shelf Sci 37, 203-212. Muñoz-Hincapié, M., Morell, J. M. & Corredor, J. E. (2002). Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Mar Poll Bull 44, 992-996. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695-700. NCCLS. (1992). Performance standards for antimicrobial disk suspecibility tests. 5th ed. Approved standard M2-A4. National Committee for Clinical Laboratory Standards, Villanova, Pa. Nogi, Y., Kato, C. & Horikoshi, K. (1998). Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170, 331-338. Paerl, H. W. & Zehr, J. P. (2000). Marine nitrogen fixation. In: Microbial Ecology of the Oceans, pp. 387-426. Edited by D. L. Kirchman. Wiley, New York. Petursdottir, S. K. & Kristjansson, J. K. (1997). Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1, 94-99. Pujalte, M. J., Macián, M. C., Arahal, D. R. & Garay, E. (2005). Stappia alba sp. nov., isolated from Mediterranean oysters. Syst Appl Microbiol 28, 672-678. Romanenko, L. A., Schumann, P., Zhukova, N. V., Rohde, M., Mikhailov, V. V. & Stackebrandt, E. (2003). Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53, 1885-1888. Rösch, C., Mergel, A. & Bothe, H. (2002). Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68, 3818-3829. Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425. Sasser, M. (2001). Identification of bacteria by gas chromotography of cellular fatty acids. Technical note 101. Newark, DE: MIDI. Satomi, M., Oikawa, H. & Yano, Y. (2003). Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53, 491-499. Scala, D. J. & Kerkhof, L. J. (1998). Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162, 61-68. Scala, D. J. & Kerkhof, L. J. (1999). Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl Environ Microbiol 65, 1681-1687. Scholten, E., Lukow, T., Auling, G., Kroppenstedt, R. M., Rainey, F. & Diekmann, H. (1999). Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 49, 1045-1051. Schroll, G., Busse, H.-J., Parrer, G., Rölleke, S., Lubitz, W. & Denner, E. B. M. (2001). Alcaligenes faecalis subsp. parafaecalis subsp. nov., a bacterium accumulating poly-β-hydroxybutyrate from acetone-butanol bioprocess residues. Syst Appl Microbiol 24, 37-43. Seitzenger, S. P. (1990). Denitrification in aquatic sediments. pp. 301-322. In Denitrification in soil and sediments. Edited by N. P. Revesbech & J. SØrensen. Plenum Press, New York, N.Y. Shapleigh, J. P. & Payne, W. J. (1985). Differentiation of c, d1 cytochrome and copper nitrite reductase production in denitrifiers. FEMS Microbiol Lett 26, 275-279. Shieh, W. Y. & Liu, C. M. (1996). Denitrification by a novel halophilic fermentative bacterium. Can J Microbiol 42, 507-514. Shieh, W. Y., Chen, Y.-W., Chaw, S.-M. & Chiu, H.-H. (2003). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53, 479-484. Shieh, W. Y., Jean, W. D., Lin, Y.-T. & Tseng, M. (2003). Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49, 244-252. Shieh, W. Y., Lin, Y.-T. & Jean, W. D. (2004). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54, 2307-2312. Shivaji, S., Gupta, P., Chaturvedi, P., Suresh, K. & Delille, D. (2005). Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55, 1453-1456. Smibert, R. M. & Krieg, N. R. (1994). Phenotypic characterization. In Manual of Methods for General and Molecular Bacteriology, pp. 607-655. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology. Song, B., Palleroni, N. J., Kerkhof, L. J. & Haggblom, M. M. (2001). Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51, 589-602. Tiedje J. M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms, pp. 179-244. Edited by A. Zehnder. Wiley, New York.. Throbäck, I. N., Enwall, K., Jarvis, Å. & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49, 401-417. Tsuneda, S., Miyauchi, R., Ohno, T. & Hirata, A. (2005). Characterization of denitrifying polyphosphate-accumulating organisms in activated sludge based on nitrite reductase gene. J Biosci Bioeng 99, 403-407. Uchino, Y., Hirata, A., Yokota, A. & Sugiyama, J. (1998). Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Rugeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kielliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44, 201-210. Urakawa, H., Kita-Tsukamoto, K. & Ohwada, K. (1997). 16S rDNA genotyping using PCR/RFLP (restriction fragment length polymorphism) analysis among the family Vibrionaceae. FEMS Microbiol Lett 152, 125-132. Van Trappen, S., Tan, T.-L., Samyn, E. & Vandamme, P. (2005). Alcaligenes aquatilis sp. nov., a novel bacterium from sediments of the Weser Estuary, Germany, and a salt marsh on Shem Creek in Charleston Harbor, USA. Int J Syst Evol Microbiol 55, 2571-2575. Vaskovsky, V. E., Kostetsky, E. Y. & Vasendin, I. M. (1975). A universal reagent for phospholipid analysis. J Chromatogr 114, 129-141. Vaskovsky, V. E. & Terekhova, T. A. (1979). HPTLC of phospholipid mixtures containing phosphatidylglycerol. J High Resolut Chromatogr Chromatogr Commun 2, 671-672. Venkateswaran, K., Dollhopf, M., Aller, R., Stackebrandt, E. & Nealson, K. (1998). Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48, 965-972. Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T. & Hansen, J. E. (1976). Greenhouse effects due to man made perturbation of trace gas. Science 194, 685-590. Ward, B. B., Cockcroft, A. R. & Kilpatrick, K. A. (1993). Antibody and DNA probes for detection of nitrite reductase in seawater. J Gen Microbiol 139, 2285-2293. Ward, B. B. (1995). Diversity of culturable denitrifying bacteria. Limits of rDNA RFLP analysis and probes for the functional gene, nitrite reductase. Arch Microbiol 163, 167-175. Ward, B. B. (1996). Nitrification and denitrification: probing the nitrogen cycle in aquatic environments. Microb Ecol 32, 247-261. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P. & Truper, H. G. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463-464. Weidner, S., Arnold, W. & Puhler, A. (1996). Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 62, 766-771. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697-703. Woese, C. R. (1987). Bacterial evolution. Microbiol Rev 51, 221-271. Xu, M., Guo, J., Cen, Y., Zhong, X., Cao, W. & Sun, G. (2005). Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 55, 363-368. Yan, T., Fields, M., Wu, L., Zu, Y., Tiedje, J. M. & Zhou, J. (2003). Molecular diversity and characterization of nitrite reductase gene fragements (nirK and nirS) from nitrate- and uranium-contaminated groundwater. Environ Microbiol 5, 13-24. Yoshinari, T. & Knowles, R. (1976). Acetylene inhibition of nitrous oxide reduction. Biochem Biophys Res Commun 69, 705-710. You, S.-J. (2005). Identification of denitrifying bacteria diversity in an activated sludge system by using nitrite reductase genes. Biotech Lett 27, 147-1482. Zhao, J.-S., Manno, D., Beaulieu, C., Paquet, L. & Hawari, J. (2005). Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5- triazine-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55, 1511-1520. Zhao, J.-S., Manno, D., Leggiadro, C., O'Neil, D. & Hawari, J. (2006). Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int J Syst Evol Microbiol 56, 205-212. Ziemke, F., Hofle, M. G., Lalucat, J. & Rossello-Mora, R. (1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179-186. Zumft, W. G. (1992). The denitrifying prokaryotes. In: The prokaryotes. A Handbook on the Biology of Bacteria: ecophysiology, isolation, identification, application, 2nd ed., vol. 1. pp. 554-582. Edited by A. Balows, H. G. Trper, M. Dworkin, W. Harder & K.-H. Schleifer. Springer-Verlag, New York, N.Y. Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533-616. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33164 | - |
dc.description.abstract | 脫氮作用為地球生態系氮循環的重要過程。具脫氮能力之細菌則種類繁多,並不侷限於單一菌屬或菌種。本研究針對台灣北部河口紅樹林,包括挖仔尾、竹圍、關渡、紅毛港、客雅溪口和中港溪口等處沉積物中的脫氮細菌菌相進行研究。使用 PYN (polypepton-yeast-nitrate) 液體培養基,配合最可能數計數法 (most-probable-number counts,略稱 MPN counts),估得各地紅樹林沉積物中,脫氮菌數約介於 2.6×104 至 1.2×105 cells/g wet wt. 間。自沉積物樣本中共分得 101 株脫氮分離株,經 AluI 和 RsaI 兩種限制內切酶,進行其 16S rRNA 基因之限制酶片段長度多型性 (restriction fragment length polymorphisms,略稱 RFLP) 圖譜之分析後,共可分為 21 個菌群。在進行多項生理生化特性檢測後發現,其中 66 株 (65.3 %) 具鈉鹽生長需求,應屬海洋原生種細菌。所有分離株中有 28 株 (27.7 %) 能行發酵作用,屬於兼性嫌氣性脫氮細菌。分析各菌群內各地代表株 16S rRNA 基因序列之親緣關係後顯示,自各地區紅樹林沉積物中所得之脫氮分離株分屬於 11 個菌屬,其中以 Marinobacter、Shewanella 和 Oceanimonas 等菌屬為主要組成。
所分得脫氮分離株中,編號為 CK1和K12,分別分離自中港溪口和關渡的菌株,除脫氮能力外,亦同時具發酵能力,屬於異營性、兼性嫌氣性,藉單根極鞭毛進行運動之革蘭氏陰性桿菌。在嫌氣狀態下,它們都能利用硝酸根或氧化亞氮作為電子接受者,進行脫氮生長;亦能利用葡萄糖或蔗糖等碳水化合物作為基質,進行發酵生長。CK1 和 K12 最適合生長於 30 ºC 至 35 ºC 和 pH 7。它們皆無鈉鹽生長需求,但最適合生長於氯化鈉濃度為 1 % 至 3 % 之環境;兩分離株中只有 K12 能在13 % 至 14 % 之氯化鈉濃度下生長。16S rRNA 基因序列分析顯示,CK1和 K12 的序列相似度為 96.8%;且與已知最相近菌種 Oceanimonas doudoroffii、Oceanimonas baumannii、Oceanimonas smirnovii 和 Oceanisphaera litoralis 在親緣樹上明顯分歧,彼此之間只具有94.1 % 至 96.8 % 的序列相似度。在細胞脂肪酸方面,CK1 和 K12 皆以 C18:1ω7c (32.6-35.7%)、C16:1ω7c (27.5-29.4%) 和 C16:0 (20.1-22.0%) 為主要組成,不同於 Oceanimonas 和 Oceanisphaera 所含菌種皆以 C16:1ω7c 為主。以G + C含量而言,CK1和K12的62-64 mol%,亦與 Oceanimonas 和 Oceanisphaera 屬所含菌種之54-59 mol% 明顯有別。多元分類數據顯示,CK1和K12 兩脫氮分離株應為不同種,且可歸類為屬於γ-Proteobacteria 之新屬細菌。目前已將其歸屬於 Zobellella 此新的菌屬,分別命名為 Zobellella denitrificans 和 Zobellella taiwanensis,並以 Zobellella denitrificans 為此菌屬之標準種。相關論文並已發表於 International Journal of Systematic and Evolutionary Microbiology 期刊 (Lin, Y.-T. & Shieh, W. Y. Int J Syst Evol Microbiol (2006). 56, 1209-1215)。 除了針對紅樹林沉積物中脫氮細菌的多樣性,及分類地位進行研究外,本研究亦利用屬於亞硝酸根還原酶 (nitrite reductase) 基因 (nirK 和 nirS) 中保守區域的引子對,透過聚合酶連鎖反應 (polymerase chain reaction,略稱 PCR) 分析脫氮分離株具有的 nir 形式。所得 101 個脫氮分離株中,有 64 株 (63.4 %) 含有 nirS 基因,僅 16 個 (15.8 %) 分離株帶有 nirK 基因,其餘 21 株則尚無法以此些引子對確定其亞硝酸根還原酶形式。分析部分分離株 nir 基因片段序列之親緣關係顯示,此些分離株具有之 nirK 基因與已知者具高度差異,序列相似度皆不及 80 %,而 nirS 基因與目前已知者則較為相近,序列相似度皆高於 93 %。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:27:29Z (GMT). No. of bitstreams: 1 ntu-95-D87241004-1.pdf: 2330234 bytes, checksum: c4cdb8790d05d2d42f7b0562cbbe1909 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 摘要 ..……………....……………………………………………… I
Abstract ...………………………………………………………….. III 第 1 章 前言 ..…………………………………………………… 1 1.1 脫氮作用之重要性 ..………………………………………... 1 1.2 紅樹林與脫氮作用 ..……………………………………….. 2 1.3 脫氮細菌之多樣性 ………………………………………… 3 1.4 兼性嫌氣性,能同時進行發酵與脫氮作用之海洋細菌: Pseudovibrio denitrificans ………………………………….. 4 1.5 好氣性,但能進行脫氮作用之脫氮細菌: Bowmanella denitrificans …………………………………... 4 1.6 研究目的 …………………………………………………… 5 第 2 章 紅樹林沉積物中脫氮細菌之菌相組成 ……………..... 6 2.1 前言 ………………………………………………………… 6 2.2 材料與方法 ……………………………………………….... 7 2.2.1 培養基 ………………………………………………….. 7 2.2.2 紅樹林沉積物樣本採集 ……………………………….. 7 2.2.3 紅樹林沉積物中脫氮細菌菌數之估算 ……………….. 8 2.2.4 沉積物內脫氮細菌之分離、純化與保存 …………….. 9 2.2.5 分離株之 DNA 萃取與 PCR 反應 ………………….. 10 2.2.6 16S rRNA 基因RFLP 圖譜之分析 …………………… 11 2.2.7 脫氮分離株各項生理生化特性之分析 ……………….. 11 2.2.8 脫氮分離株親緣關係之分析 ………………………….. 12 2.3 結果與討論 ……………………………………………….... 13 2.3.1 各地紅樹林沉積物中脫氮細菌菌數 ……...…………... 13 2.3.2 脫氮細菌之分離與其 16S rRNA 基因 RFLP 圖譜之分析 …………………………………………….. 14 2.3.3 脫氮分離株之生理生化活性 ………………………….. 15 2.3.4 各菌群各地代表株親緣關係之分析 ………………….. 15 圖 ……………………………………………………………….. 22 表 ……………………………………………………………….. 26 第 3 章 能兼行發酵作用與脫氮作用之新屬新種脫氮細菌: Zobellella denitrificans 和 Zobellella taiwanensis ……….. 33 3.1 前言 ………………………………………………………... 33 3.2 材料與方法 ………………………………………………... 34 3.2.1 培養基 …………………………………………………. 34 3.2.2 菌株來源 ………………………………………………. 35 3.2.3 DNA 萃取、16S rRNA 基因 PCR 反應與 親緣關係之分析 ……………………………………….... 35 3.2.4 菌株 G + C 含量分析 ………………………………… 35 3.2.5 DNA-DNA 相關性 (DNA-DNA relatedness) 之分析 .. 36 3.2.6 脂肪酸與極性脂質組成之分析 ………………………. 36 3.2.7 不同因子對分離株生長之影響 ……............................. 37 3.2.8 分離株生理生化特性之檢測 …………..……………... 37 3.2.9 分離株之抗生素藥劑感受性試驗 …............................. 38 3.2.10 分離株 quinone 之萃取與檢測 …………………….. 38 3.3 結果與討論 ………………………………………………... 39 3.3.1 分離株16S rRNA 基因序列之分析 ………………….. 39 3.3.2 分離株DNA 之 G + C 含量 …………………………. 40 3.3.3 分離株之 DNA-DNA 相關性 ....................................... 40 3.3.4 分離株之脂肪酸與極性脂肪組成 …………………….. 40 3.3.5 不同因子對分離株生長之影響 …….............................. 41 3.3.6 分離株之各項生理生化特性 …………………...……... 42 3.3.7 分離株對抗生素藥劑之感受性 ……………………….. 44 3.3.8 分離株之 quinone 組成 ………………………………. 44 圖 ……………………………………………………………….. 46 表 ……………………………………………………………….. 51 第 4 章 紅樹林沉積物中脫氮基因之多樣性 ………….…….... 58 4.1 前言 ………………………………………………………... 58 4.2 材料與方法 ………………………………………………... 59 4.2.1 培養基 …………………………………………………. 60 4.2.2 培養條件 ………………………………………………. 60 4.2.3 分離株之 DNA 萃取 …………………………………. 60 4.2.4 nir 基因引子對與 PCR 反應 ………………………… 60 4.2.5 分離株之 nir 基因定序與序列分析 ……………….... 62 4.3 結果與討論 ……………………………………………….. 62 4.3.1 nir 基因之 PCR 反應和沉積物脫氮分離株之 nir 基因形式 ………………………………………………... 62 4.3.2 紅樹林沉積物脫氮分離株 nir 基因之親緣關係 …… 64 圖 ………………………………………………………………. 66 表 ………………………………………………………………. 68 參考文獻 ………………………………………………………… 69 附錄一 …………………………………………………………… A1 附錄二 …………………………………………………………… A2 附錄三 …………………………………………………………… A3 | |
dc.language.iso | zh-TW | |
dc.title | 紅樹林沉積物中脫氮細菌之研究 | zh_TW |
dc.title | The Study of Denitrifying Bacteria from Mangrove Sediments | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡懷楨,蔡珊珊,李佳音,陳卓昇,劉玫英,李重義,李永安 | |
dc.subject.keyword | 脫氮細菌,沉積物,紅樹林, | zh_TW |
dc.subject.keyword | Denitrifying bacteria,Sediments,Mangrove, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。