Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33151
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王明光
dc.contributor.authorYa-Ting Chanen
dc.contributor.author詹雅婷zh_TW
dc.date.accessioned2021-06-13T04:26:58Z-
dc.date.available2015-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citation王尚禮 (1993) ,過氯酸鋁之水解反應與水鋁氧石之生成機制,國立台灣大學農業化學研究所碩士論文。
官文惠 (1994) ,氧化鋁覆膜於石英砂吸附水中硒之研究,國立台灣大學環境工程學研究所碩士論文。
賴進興 (1995) ,氧化鐵覆膜濾砂吸附過濾水中銅離子之研究,國立台灣大學環境工程學研究所博士論文。
詹雅婷 (2007) ,二元氧化物系統對於硒酸鹽與亞硒酸鹽之吸持作用,國立台灣大學農業化學研究所碩士論文。
鄭大偉 (2010) ,無機聚合技術的發展應用及回顧,礦冶, 54 卷,第 1 期,第 140 頁- 第 157 頁。
Aharoni, C., and F. C. Tompkins. 1970. Kinetics of adsorption and desorption and Elovich Equation. Advances in Catalysis and Related Subjects, vol. 21, AcademicPress, New York.
Almeida, R.M., T.A. Guiton, and C.G. Pantano. 1990. Characterization of silica gels by infrared reflection spectroscopy. J. NonCryst. Solids 121, 193-197.
Ankudinov, A.L., B. Ravel, J.J. Rehr, and S.D. Conradson. 1998. FEFF8.20: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B. 58, 7565-7576.
Barbosa, V. F. F. K., J. D. MacKenzie and C. Thaumaturgo. 2000. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers', International Journal of Inorganic Materials 2, 309-317.
Barrow, N. J., L. Madrid, and A. M. Posner. 1981. A partial model for the rate of adsorption and desorption of phosphate by goethite. J. Soil Sci. 32, 399-407.
Balistrieri, L., and T. T. Chao. 1990. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 54, 739-751.
Blesa, M.A. and E. Matijevic. 1989. Phase transformations of iron oxide, oxyhydroxides, and hydrous oxide in aqueous media. Adv. Colloid Interface Sci. 29, 173-221.
Barron P. F., M. A. Wilson, A. S Campbell., and R. L. Frost .1982. Detection of imogolite in soils using solid state 29Si NMR. Nature 299, 616-618.
Bruggeman, C., A. Maes , J. Vancluysen, and P. Vandemussele. 2005. Selenite reduction in Boom clay: Effect of FeS2, clay minerals and dissolved organic matter. Environ. Pollut. 137, 209-221.
Burchill, G., M.H.B. Hayes, and D.J. Greenland. 1981. Adsorption. In: Greenland, D.J., Hayes, M.B. (Eds.), The Chemistry of Soil Processes. Wiley, N.Y., 221–401.
Charlet L. and A. Manceau. 1992. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide/water interface. II Adsorption, coprecipitation and surface precipitation on ferric hydrous oxides. J. Colloid Interface Sci. 148, 425-442.
Cornell, R. M., and U. Schwertmann. 1996. The iron oxides, structure, properties, reactions, occurrence and uses. VCH Verlagsgesellschaft mbH: D-69451 Weinheim, Germany.
Davidovits, J.. 2008. Geopolymer Chemistry and Application. France: Institute Géopolymère 61-70.
Davis, J. A. and J. O. Leckie. 1978. Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J. Colloid Interface Sci. 67, 90–107.
Davis, J. A., and J. O. Leckie. 1980. Surface ionization and complexation at the oxide/water interface III adsorption of anion. J. Colloid Interface Sci. 74, 32-34.
Doucet F. J., C. Schneider, S. J. Bones, A. Kretchmer, I. Moss, P. Tekely and C. Exley. 2001. The formation of hydroxyaluminosilicates of geochemical and biological significance. Geochim. Cosmochim. Acta 65, 2461-2467.
Duxson, P., G. C. Lukey and J. S. J. van Deventer. 2006. Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir 22, 8750-8757.
Fabrizioli, P., T. Bürgi, M. Burgener, S. Van Doorslaer and A. Baiker. 2002. Synthesis, structural and chemical properties of iron oxide–silica aerogels, J. Mater. Chem. 12 , 619-630.
Faulkner, J.S.. 1982. The modern theory of alloys. Prog. Mater. Sci. 27, 1-187.
Flanigen, E. M., H. Khatami and H. A. Szymanski. 1971. Molecular Sieve Zeolites I, ed. E. M. Flanigen and L. B. Sand (ACS Symp. Ser. 121, Am. Chem. SOC., Washington D.C.), 201.
Flanigen, E. M.. 1971. Zeolite Chemistry and Catalysis, ed. J. Rabo (ACS Monograph, Am. Chem. SOC., Washington D.C.), 201.
Frankenberger Jr., W.T., Benson, S. (Eds.). 1994. Selenium in the environment. Marcel Dekker, New York, 472.
Gallup D.. 1997. Aluminum silicate scale formation and inhibition: scale characterization and laboratory experiments. Geothermics 26, 483-499.
Genç-Fuhrman, H., P. S. Mikkelsen, and A. Ledin. 2007. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Res. 41, 591-602.
Goh, K. H. and T. T. Lim. 2004. Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere 55, 849-859.
Gropper, S. S., and J. L. Groff. 2005. Advanced Nutrition and Human Metabolism, 4th ed., p. 456-461. Wardswirth.
Hart, L.D.. 1990. Alumina chemicals : science and technology handbook. Westerville, Ohio: American Ceramic Society
Hayes, K. F.. 1987. Equilibrium, spectroscopic and kinetic studies of ion adsorption at the oxide/aqueous interface. Ph. D. Dissertation, Stanford University.
Hayes, K. F., A. L. Roe, G. E. Brown, K. O. Hodgson, J. O. Leckie, and G. A. Parks. 1987. In situ X-ray adsorption study of surface complexes: selenium oxyanions on α-FeOOH. Science 238, 783-786.
Hayes, K. F., C. Papelis and J. O. Leckie. 1988. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J. Colloid and Interface Sci. 125, 717-726.
Hlavay, J., and K. Polyák. 2005. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. J. Colloid and Interface Sci. 284, 71-77.
Ho, Y.S.. 2006. Review of second-order models for adsorption systems. J. Hazard. Mater. B136, 681-689.
Houston, J.R., J.L. Herberg, R.S. Maxwell, and S.A. Carroll. 2008. Association of dissolved aluminum with silica: Connecting molecular structure to surface reactivity using NMR. Geochim. Cosmochim. Acta 72, 3326-3337.
Huang, C. P. and H. A. Elliott. 1981. Adsorption characteristics of Some Cu(II) Complexes on Aluminosilicates. Water Res. 15, 849-853.
Huang, P.M. and R. Fuji. 1996. Selenium and arsenic. p.793–831. In D.L. Sparks (ed.) Methods of soil analysis. Part 3. SSSA Book Ser. No. 5. SSSA, Madison WI.
Huang, P.M., M.K. Wang, N. Kampf, and D.G. Schulze, in: J.B. Dixon, D.G. Schulze (Eds.), Soil Mineralogy With Environmental Applications, in: Soil Science Society of America Book Series, 7, Soil Science Society of America, Madison, WI, 2002, 261–289.
Inorganic Crystal Structure Database (ICSD). 1981. In: Kurchhof A, Pebler A, Warkenten E. (Eds.). Gmelin-Institut für Anorganische Chemie, Springer-Verlag, Berlin.
Iler, R.K.. 1979. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. John Wiley and Sons, New York, N.Y.
Koningsberger, D.C., and P. Prins. 1998. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES; John Wiley & Sons, New York.
Kuan W. H., S. L. Lo, M. K. Wang and C. F. Lin. 1998. Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand. Water Res., 32, 915–923.
Kuan, W.H., S.L. Lo, and M.K. Wang. 2000. pH effect on the surface and bulk characteristics of metallic cations/SiO2 suspensions. Water Sci. Technol., 42, 441–446.
Kuan W. H., S. L. Lo and M. K. Wang. 2004. Modeling and electrokinetic evidences on the processes of the Al(III)sorption continuum in SiO2(s) suspension. J. Colloid and Interface Sci. 272, 489-497.
Lagergren, S.. 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1-39.
Lai, C. H., and C. Y. Chen. 2001. Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44, 1177-84.
Lavander, O. A.. 1988. Selenium, chromium, and manganese. In: Modern Nutrition in Health and Disease. 7th ed., M.E. Shils and V.R. Young (eds.), Lea Febiger, Phialadelphia, PA, 263-267.
Lee, W. K. W. and J. S. J. van Deventer. 2003. Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates. Langmuir 19, 8726-8734.
Li, D.; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.; Pan, Y. Al K-edge XANES spectra of aluminosilicate minerals. Am. mineral. 1995, 80, 432-440.
Lo, S.L., and T.Y. Chen. 1997. Adsorption of Se(IV) and Se(VI) on an iron-coated sand from water. Chemosphere 35, 919-930.
Lenz, M., E.C. Van Hullebusch, G. Hommes, F.F.X. Corvini, and P.N.L. Lens. 2008. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res. 42, 2184-2194.
Lytle, F.W., Greefgor, R.B., Sandstrom, D.R., Marques, E.C., Wong, F., Spiro, C.L., Huffman, G.P., Huggins, F.E., 1984. Nucl. Instrum. Methods Phys. Res. A. Accel. Spectrom. Detect. Assoc. Equip. 226, 542-548.
Manahan, S. E.. 1984. Environmental Chemistry. 4th ed., Prindle Weber and Schmidt Publishers, Boston, MA., 106-151.
Manceau, A., Charlet, L., 1994. The mechanism of selenate adsorption on goethite and hydrous ferric oxide. J. Colloid Interface Sci. 168, 87-93.
Mayland, H.K. 1994. Selenium in plant and animal nutrition. p. 29–45. In W.T. Frankenberger, and S. Benson (ed.) Selenium in the environment. Marcel Dekker, Inc., New York.
Mayland, H.K., L.F. James, K.E. Panter, and J.E. Sonderegger. 1989. Selenium in seleniferous environments. p 15–50. In L.W. Jacobs (ed.) Selenium in agriculture and the environment. SSSA Spec. Pub. No. 23. SSSA, Madison WI.
Meng, X., and R.D. Letterman. 1993. Effect of component oxide interaction on the adsorption properties of mixes oxides. Environ. Sci. Technol. 27, 970-975.
Meng X., and RD. Letterman. 1996. Modeling cadmium and sulfate adsorption by Fe(OH)3/SiO2 mixed oxides. Water Res. 30, 2148-2154.
Milonjic, S.K., 2007. A consideration of correct calculation of thermodynamic parameters of adsorption. Journal of Serbian Chemical Society 72, 1363-1367.
Morril, L. G., B. C. Mahilum, and S. H. Mohiuddin. 1982. Sorption, Degradation and Persistence. In: Organic Compounds in soils, Ann Arbor Sci. Publisher, Inc..
Murphy, M. J., C. N. Davids, and E. B. Norman. (1976) New Arsenic Isotope - As-67. Bull. Am. Phys. Soc. 21, 968
Nagano, T., S. Nakashima, S. Nakayama, K. Osada, and M. Senoo. 1992. Color variation associated with rapid formation of goethite from proto-ferrihydrite at pH 13 and 40 °C. Clays and Clay Miner. 40, 6013-60.
Neal, R.H., G. Sposito, K.M. Holtzclaw, and S.J. Traina. 1987. Selenite adsorption on alluvial soil: I. soil composition and pH effects; II. Solution composition effects. Soil Sci. Soc. Am. J. 51, 1161-1169.
Parida, K. M., B. Gorai, N. N. Das, and S. B. Rao. 1997. Adsorption of selenite (SeO32-) on different forms of iron oxyhydroxides. J. Colloid Interface Sci. 185, 355–362.
Parks, G. A.. 1965. The isoelectric points of solids, solid hydroxides, and aqueous hydroxo complex systems: Chemical Review, 65, 177-198.
Parler, C.M., J.A. Ritter, and M.D. Amiridis. 2001. Infrared spectroscopic study of sol–gel derived mixed-metal oxides. J. NonCryst. Solids 279, 119-125.
Peak, D., and D.L. Sparks. 2002. Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ. Sci. Technol. 36, 1460-1466.
Peak, D., 2006. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J. Colloid Interface Sci. 303, 337-345.
Peak, D., U.K. Saha, and P.M. Huang. 2006. Selenite adsorption mechanisms on pure and coated montmorillonite: An EXAFS and XANES spectroscopic study. Soil Sci. Soc. Am. J. 70, 192-203.
Poulton, S. W., M. D. Kroma, J. Van Rijn, and R. Raiswell. 2002. The use of hydrous iron (III) oxides for the removal of hydrogen sulphide in aqueous systems. Water Res. 36, 825-834.
Ravel, B., Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad. 12, 537-541.
Rehr, J.J., Albers, R.C., 2000. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621-654.
Newville, M., 2001. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 8, 322-324.
Saha, U.K., and P.M. Huang. 2010. Surface coverage effects on the desorption kinetics of selenite from a hydroxyaluminum–montmorillonite complex. J. Colloid Interface Sci. 350, 320-329.
Scott, M.J., and J.J. Morgan. 1996. Reactions at oxide surfaces. II. Oxidation of Se(IV) by synthetic birnessite. Environ. Sci. Technol. 30, 1990-1996.
Sheha, R.R., and E.A. El-Shazly. 2010. Kinetics and equilibrium modeling of Se(IV) removal from aqueous solutions using metal oxides. Chemical Engineering Journal 160, 63-71.
Sheikholeslami, R., I.S. Al-Mutaz, S. Tan, S. D.Tan. 2002. Some aspects of silica polymerization and fouling and its pretreatment by sodium aluminate, lime and soda ash. Journal of Desalination. 150, 85-92.
Shriver, D.F., P. Atkins, and C.H. Langford. 1994. Inorganic Chemistry. 2nd ed. W.H. Freeman and Company, New York.
Skoog, D.A., F.J. Holler, and T.A. Nieman. 1998. Principles of Instrumental Analysis.
5ed. Hartcourt Brace and Company, Florida.
Söhnel, O. and J. Garside. 1992. Precipitation: Basic principles and industrial applications. Butterworth-Heinemann, Oxford.
Sparks, D.L.. 2003. Environmental Soil Chemistry. 2nd ed. Academic Press, Amsterdam.
Stumm, W., and R. Wollast. 1990. Kinetics of the surface-controlled dissolution of oxide minerals. Rev. Geophys. 28, 53-69.
Stumm, W.. 1992. Chemistry of the Solid - Water Interface. John Wiley and Sons, New York
Stumm, W., and J.J. Morgan. 1995. Aquatic Chemistry: chemical equilibria and rates in natural waters. John Wiley and Sons, New York.
Suhwertmann, U.. 1991. Solubility and dissolution of iron-oxides. Plant and Soil, 130, 1-25.
Szostak, R., V. Nair and T. L. Thomas. 1987. Incorporation and stability of iron in molecular-sieve structures. J. Chem. Soc., Faraday Trans. 1, 83, 487-494.
Verdolotti, L., S. Iannace, M. Lavorgna and R. Lamanna. 2008. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J. Mater. Sci. 43, 865-873.
Wasewar, K. L., B. Prasad, and S. Gulipalli. 2009. Adsorption of selenium using bagasse fly ash. Clean 37, 534-543.
Wijnia, H., and C.P. Schulthess. 2000. Vibration spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces. J. Colloid Interface Sci. 229, 286-297.
Wu, C. H., C. F. Lin, and S. L. Lo. 2003. Modeling Competitive Adsorption of Chromate, Sulfate and Selenate on γ-Al2O3: Comparison between the Triple-Layer Model and a Freundlich-type Multi-component Isotherm. J. of the Chinese Inst. of Environ. Eng. 13, 87-94.
Yoshino, H., K. Kamiya, and H.J. Nasu, 1990. Solids IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses. J. NonCryst. 126, 68-78.
Zeng, L.. 2003. A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal. Water Res. 37, 4351-4358.
Zhang, G. S., J. H. Qu, H. J. Liu, R. P. Liu, and R. C. Wu. 2007. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res. 41, 1921-1928.
Zhang, N., L.-S. Lin, and D. Gang. 2008. Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res. 42, 3809-3816.
Zhang, P., and D.L. Sparks. 1990. Kinetics of selenate and selenite adsorption/ desorption at the goethite/ water interface. Environ. Sci. Technol. 24, 1848-1856.
Zhao, L., G.H. Zhao, M. Du, Z.D. Zhao, L.X. Xiao, and X.S. Hu. 2008. Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus. Euro. Food Res. Technol. 226, 499–505.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33151-
dc.description.abstract由鋁或鐵氧化物混合非結晶態的二氧化矽成的二元氧化物系統去除硒氧陰離子的研究相當少。本研究利用 Al3+ 或 Fe3+ 與無定形二氧化矽在不同pH 值合成二元氧化物系統,再藉由巨觀和微觀尺度的實驗,包括比表面積、零電點 (zero point of charge, ZPC)、溶解度、傅立葉變換紅外線光譜 (FT-IR) 、固態核磁共振技術(27Al 和29Si MAS NMR) 和 X 光吸收光譜 (XAS) 來研究鋁-矽與鐵-矽之間的交互作用。巨觀實驗說明,Al(III)/SiO2 系統中的 Al(III) 可以阻塞二氧化矽表面,使得矽無法溶出;但 Fe(III)/SiO2 系統並沒有此現象,使得Fe(III)/SiO2 系統表面零電點較 Al(III)/SiO2 系統低。FT-IR 、 MAS NMR 和XAS都說明了,鋁的化學性質改變二氧化矽的表面,然而,鐵並沒有。二元氧化物系統進行對於吸附硒酸根與亞硒酸根的巨觀等溫、動力和脫附等實驗,以及微觀的XAS。吸附硒酸根與亞硒酸根的等溫與動力學結果適合以 Langmuir 等溫模式和擬二級動力學模型來說明其過程。熱力學參數則說明:硒酸根與亞硒酸根吸附在二元氧化物系統表面的過程為放熱和自發反應。根據 XAS 圖譜說明:硒酸根與亞硒酸根吸附在二元氧化物系統表面都形成化學吸附的內層表面錯合物。zh_TW
dc.description.abstractRemoval of selenium oxyanions by binary oxide systems, Al- or Fe-oxide mixed with X-ray noncrystalline SiO2, was previously not well understood. This study evaluates that reactions of Al or Fe with amorphous silica prepared at different pH values by macro- and micro-scale experiments including BET surface area, electrophoresis, stability, Fourier transform infrared (FT-IR), solid-state nuclear magnetic resonance techniques (27Al and 29Si magic-angle spinning (MAS) NMR), and X-ray absorption spectroscopy (XAS). Macro-scale experiments showed that Al(III) could block an silicon oxide surface group to suppress dissolution of silica, but not Fe(III). The negative charge of silica have no influence on the surface charge (i.e., pHzpc) of Al-Si binary oxide, nonetheless, the pHzpc of Fe-Si binary oxides was reduced by silica. Based on FT-IR, 29Si MAS NMR, and XAS spectra, Al has changed the chemical properties of silica, such as bonding vibration and electron distribution, however, Fe did not. Micro-scale experiments (i.e., XAS) demonstrated that Al(III) should be a stronger association with silica than Fe(III) on silica. The binary oxide systems were characterized for macro-scale adsorption isotherm and kinetics of selenite and selenate, micro-scale adsorption XAS. Adsorption isothermal and kinetic data of selenium can be well fitted to the Langmuir isotherm and the pseudo-second-order kinetic model. Thermodynamic parameters indicated that the processes of selenite and selenate adsorbed on the binary oxide systems are exothermic and spontaneous reactions. Based on simple geometrical constraints, selenite on the both binary oxides systems forms bidentate inner-sphere surface complexes, and selenate on Fe(III)/SiO2 forms stronger complexes than that on Al(III)/SiO2.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:26:58Z (GMT). No. of bitstreams: 1
ntu-100-D96623003-1.pdf: 1448747 bytes, checksum: 937fb92b846ae2b25d990a6174ba2d56 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄......................................................ii
圖目錄....................................................iv
表目錄....................................................xi
謝誌......................................................xiv
Abstract..................................................xv
摘要.....................................................xvii
第一章 前言…………………………………………………………...1
第二章 文獻回顧……………………………………………………...2
2.1 硒的來源與毒害…………………………………………………2
2.2 鐵、鋁與矽氧化物特性…………………………………………5
2.3 二元氧化物系統…………………………………………………13
2.4 沈澱作用…………………………………………………………13
2.5 吸附作用…………………………………………………………15
2.5.1 等溫吸附模式.................................17
2.5.2 動力吸附模式.................................21
2.5.3 吸附熱力學參數...............................23
2.6 紅外線光譜原理與應用………………………………………....24
2.7 核磁共振光譜原理與應用……………………………………....29
2.8 同步輻射原理與應用…………………………………………....34
第三章 材料與方法........................................36
3.1 實驗設計………………………………………………………....36
3.2 合成單一氧化物與二元氧化物系統…………………………....37
3.3 二元氧化物系統表面特性分析………………………………....37
3.3.1 比表面積測定……………………………………….....37
3.3.2 表面電荷與粒徑分析………………………………….....38
3.3.3二元氧化物系統的溶解度….………………………….....39
3.3.4 傅立葉轉換紅外線光譜……………………………….....39
3.3.5 核磁共振光譜………………………………………….....39
3.3.6 X 光吸收光譜…………………………………………..40
3.4 平衡吸附實驗……………………………………………………..40
3.4.1 溫度效應……………………………………………….....40
3.4.2 競爭效應……………………………………………….....41
3.5 等溫動力吸附……………………………………………..……..41
3.6 脫附實驗…………………………………………………..……41
3.7 硒之 X 光吸收光譜………………………….………………..41
3.8 X光吸收光譜數據分析………………………………………..42
第四章 結果與討論......................................44
4.1 二元氧化物系統表面特性...............................44
4.1.1 比表面積與孔洞大小……………………………….44
4.1.2 粒徑分析………………………………………………….51
4.1.3 表面電荷…………………………………………….54
4.1.4 二元氧化物系統的溶解度………………………….57
4.1.5 傅立葉轉換紅外線光譜………………………………….59
4.1.6 魔角自旋核磁共振光譜…………………………………64
4.1.7 二元氧化物系統的 XAS 光譜………………………67
4.2 吸附實驗結果..........................................71
4.2.1 溫度效應實驗................................71
4.2.2 競爭效應實驗………………………………………..78
4.2.3 動力吸附………………………………………......84
4.2.4 脫附實驗....................................93
4.2.5 二元氧化物吸附硒陰氧離子的 XAS 光譜分析………96
第五章 結論與建議………………………………………………….102
第六章 參考文獻……………………………………………………104
dc.language.isozh-TW
dc.subject二元氧化物zh_TW
dc.subject吸附zh_TW
dc.subject內層表面錯合物zh_TW
dc.subject硒氧陰離子zh_TW
dc.subjectelectrophoresisen
dc.subjectbinary oxide systemsen
dc.subjectadsorptionen
dc.subjectselenium oxyanionsen
dc.subjectinner-sphere surface complexen
dc.title硒氧陰離子與二元氧化物系統界面關係zh_TW
dc.titleInterface between selenium oxyanions and the binary oxide systemsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor官文惠
dc.contributor.oralexamcommittee賴朝明,林錕松,張瓊芬,胡景堯
dc.subject.keyword吸附,二元氧化物,內層表面錯合物,硒氧陰離子,zh_TW
dc.subject.keywordadsorption,binary oxide systems,electrophoresis,inner-sphere surface complex,selenium oxyanions,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2011-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved