請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33145
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉瑞芬(Ruey-Fen Liou) | |
dc.contributor.author | Chien-Yu Huang | en |
dc.contributor.author | 黃千育 | zh_TW |
dc.date.accessioned | 2021-06-13T04:26:43Z | - |
dc.date.available | 2011-07-25 | |
dc.date.copyright | 2006-07-25 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-21 | |
dc.identifier.citation | 安寶貞。2000。台灣盆花植物疫病之新紀錄。植病會刊9:1-10
安寶貞、蔡志濃。2000。台灣白鶴芋疫病。植病會刊9:145-150 張東柱、謝煥儒、張瑞璋、傅春旭。 1999。台灣常見樹木病害。台灣省林業試驗所出版。204頁。 Akhtar, N.,Pahlman, A. K., Larsson, K., Corbett, A. H., and Adler, L. 2000. SGD1 encodes an essential nuclear protein of Saccaromyces cerevisiae that affects expression of the GPD1 gene for glycerol 3-phosphate dehydrogenase. FEBS Lett. 483: 87-92. Amoah-Buahin, E., Bone, N., and Armstrong, J. 2005. Hyphal Growth in the Fission Yeast Schizosaccharomyces pombe. Eukaryot. Cell 4: 1287-1297. Banuett, F. 1998. Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol. Mol. Biol. Rev. 62: 249-274. Blanco, F.A., and Judelson, H.S. 2005. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol. Microbiol. 56: 638-648. Breitkreutz, A., and Tyers, M. 2006. Cell signaling. A sophisticated scaffold wields a new trick. Science 311: 789-790. Brewster, J.L., and Gustin, M.C. 1994. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 10: 425-439. Brewster, J.L., de Valoir, T., Dwyer, N.D., Winter, E., and Gustin, M.C. 1993. An osmosensing signal transduction pathway in yeast. Science 259: 1760-1763. Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., and Young, R.A. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12: 323-337. Chang, L., and Karin, M. 2001. Mammalian MAP kinase signalling cascades. Nature 410: 37-40. Choi, E.S., Chung, H.J., Kim, M.J., Park, S.M., Cha, B.J., Yang, M.S., and Kim, D.H. 2005. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica. Microbiology 151: 1349-1358. Denison, S.H. 2000. pH regulation of gene expression in fungi. Fungal. Genet. Biol. 29: 61-71. Dong, X., Peng, Y., Peng, Y., Xu, F., He, X., Wang, F., Peng, X., Qiang, B., Yuan, J., and Rao, Z. 2005. Characterization and crystallization of human DPY-30-like protein, an essential component of dosage compensation complex. Biochim. Biophys. Acta. 1753: 257-262. Doughman, R.L., Firestone, A.J., and Anderson, R.A. 2003. Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J. Membr. Biol. 194: 77-89. Dumaz, N., and Marais, R. 2005. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. Febs. J. 272: 3491-3504. Edmunds, J.W., and Mahadevan, L.C. 2004. MAP kinases as structural adaptors and enzymatic activators in transcription complexes. J. Cell Sci. 117: 3715-3723. Eisman, B., Alonso-Monge, R., Roman, E., Arana, D., Nombela, C., and Pla, J. 2006. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot. Cell 5: 347-358. Erwin, D.C., and Riberio, O.K. 1996. Phytophthora diseases worldwide. The American Phytopathological Society. Minnesota, USA. 562pp. Erwin, D.C., Bartnicki-Garcia, S., and Tsao, P.H.e. 1983. Phytophthora : its biology, taxonomy, ecology, and pathology St. Paul, Minn. : American Phytopathological Society. 392 p. Furukawa, K., Hoshi, Y., Maeda, T., Nakajima, T., and Abe, K. 2005. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 56: 1246-1261. Gagiano, M., Bauer, F.F., and Pretorius, I.S. 2002. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res. 2: 433-470. Gagiano, M., Bester, M., van Dyk, D., Franken, J., Bauer, F.F., and Pretorius, I.S. 2003. Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability. Mol. Microbiol. 47: 119-134. Gajendran, K., Gonzales, M.D., Farmer, A., Archuleta, E., Win, J., Waugh, M.E., and Kamoun, S. 2006. Phytophthora functional genomics database (PFGD): functional genomics of phytophthora-plant interactions. Nucleic. Acids. Res. 34: D465-470. Garrido, E., and Perez-Martin, J. 2003. The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol. Microbiol. 47: 729-743. Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R.J., Luo, Y., and Han, J. 2002. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295: 1291-1294. Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin, A., and Ellis, B.E. 2006. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends. Plant. Sci. Hardham, A.R. 2005. phytophthora cinnamomi. Molecular plant pathology 6: 589-604. Ho, H.H., and Jong, S.C. 1989. Phytophthora nicotianae (Phytophthora parasitica). Mycotaxon 32: 199-217. Ho, H.H., Ann, P.J., and Chang, H.S. 1995. The genus Phytophthora in Taiwan. Institute of Botany, Academia Sinica Monograp Series. No.15. Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372. Hopfer, U., Hopfer, H., Jablonski, K., Stahl, R.A., and Wolf, G. 2006. The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J. Biol. Chem. 281: 8645-8655. Hsu, D.R., and Meyer, B.J. 1994. The dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery. Genetics 137: 999-1018. Hsu, D.R., Chuang, P.T., and Meyer, B.J. 1995. DPY-30, a nuclear protein essential early in embryogenesis for Caenorhabditis elegans dosage compensation. Development 121: 3323-3334. Jin, Y., Weining, S., and Nevo, E. 2005. A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: Prospects for saline agriculture. Proc. Natl. Acad. Sci. U S A. 102: 18992-18997. Judelson, H.S., and Roberts, S. 2002. Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot. Cell 1: 687-695. Judelson, H.S., Coffey, M.D., Arredondo, F.R., and Tyler, B.M. (1993). Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr. Genet. 23: 211-218. Kamoun, S. 2003. Molecular genetics of pathogenic oomycetes. Eukaryot. Cell 2: 191-199. Kansra, S., Stoll, S.W., Johnson, J.L., and Elder, J.T. 2004. Autocrine extracellular signal-regulated kinase (ERK) activation in normal human keratinocytes: metalloproteinase-mediated release of amphiregulin triggers signaling from ErbB1 to ERK. Mol. Biol.Cell 15: 4299-4309. Kelleher, R.J., 3rd, Govindarajan, A., Jung, H.Y., Kang, H., and Tonegawa, S. 2004. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116: 467-479. Kojima, K., Bahn, Y.S., and Heitman, J. 2006. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology 152: 591-604. Kojima, K., Kikuchi, T., Takano, Y., Oshiro, E., and Okuno, T. 2002. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol. Plant Microbe. Interact. 15: 1268-1276. Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., and Okuno, T. 2004. Fungicide activity through activation of a fungal signalling pathway. Mol. Microbiol. 53: 1785-1796. Krantz, M., Becit, E., and Hohmann, S. 2006. Comparative genomics of the HOG-signalling system in fungi. Curr. Genet. 49: 137-151. Kyosseva, S.V. 2004. Mitogen-activated protein kinase signaling. Int. Rev. Neurobiol. 59: 201-220. Latijnhouwers, M., and Govers, F. 2003. A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot. Cell 2: 971-977. Latijnhouwers, M., Munnik, T., and Govers, F. 2002. Phospholipase D in Phytophthora infestans and its role in zoospore encystment. Mol. Plant Microbe. Interact. 15: 939-946. Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. 2004. A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol. Microbiol. 51: 925-936. Lengeler, K.B., Davidson, R.C., D'Souza, C., Harashima, T., Shen, W.C., Wang, P., Pan, X., Waugh, M., and Heitman, J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64: 746-785. Lev, S., and Horwitz, B.A. 2003. A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Plant Cell 15: 835-844. Lew, R.R., Levina, N.N., Shabala, L., Anderca, M.I., and Shabala, S.N. 2006. Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi. Eukaryot. Cell 5: 480-487. Lieb, J.D., de Solorzano, C.O., Rodriguez, E.G., Jones, A., Angelo, M., Lockett, S., and Meyer, B.J. 2000. The Caenorhabditis elegans dosage compensation machinery is recruited to X chromosome DNA attached to an autosome. Genetics 156: 1603-1621. Lippman, E., Erwin, D. C., and Bartnicki-Garcia, S. 1974. Isolation and chemical composition of oospore-oogonium walls of Phytophthora megasperma var. sojae. J. Gen. Microbiol. 56:131-141. Lu, G., Kang, Y.J., Han, J., Herschman, H.R., Stefani, E., and Wang, Y. 2006. TAB-1 modulates intracellular localization of p38 MAP kinase and downstream signaling. J. Biol. Chem. 281: 6087-6095. Maloberti, P., Castilla, R., Castillo, F., Maciel, F.C., Mendez, C.F., Paz, C., and Podesta, E.J. 2005. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. Febs. J. 272: 1804-1814. Maria Laxalt, A., Latijnhouwers, M., van Hulten, M., and Govers, F. 2002. Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet. Biol. 36: 137-146. Martin, H., Flandez, M., Nombela, C., and Molina, M. 2005. Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol. Microbiol. 58: 6-16. Martinez-Espinoza, A.D., Ruiz-Herrera, J., Leon-Ramirez, C.G., and Gold, S.E. 2004. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr. Microbiol. 49: 274-281. Mayorga, M.E., and Gold, S.E. 1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34: 485-497. Mayorga, M.E., and Gold, S.E. 2001. The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. Mol. Microbiol. 41: 1365-1379. Mehrabi, R., Van der Lee, T., Waalwijk, C., and Gert, H.J. 2006. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol. Plant Micrbe. Interact. 19: 389-398. Moriwaki, A., Kihara, J., Mori, C., and Arase, S. 2006. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol. Res. Nakagami, H., Pitzschke, A., and Hirt, H. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends. Plant Sci. 10: 339-346. Novaes-Ledieu, M., Jiménez-Martínez, A., and Villanueva, J. R. 1967. Chemical composition of hyphal wall of Phycomcycetes. J. Gen. Microbiol. 47: 237-245. Orlicky, S., Tang, X., Willems, A., Tyers, M., and Sicheri, F. 2003. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112: 243-256. Park, S.M., Choi, E.S., Kim, M.J., Cha, B.J., Yang, M.S., and Kim, D.H. 2004. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51: 1267-1277. Penalva, M.A., and Arst, H.N., Jr. 2002. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 66: 426-446. Pfaffl, M.W., Horgan, G.W., and Dempfle, L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic. Acids Res. 30: 36. Pieterse, C.M., Derksen, A.M., Folders, J., and Govers, F. 1994a. Expression of the Phytophthora infestans ipiB and ipiO genes in planta and in vitro. Mol. Gen. Genet. 244: 269-277. Pieterse, C.M., Verbakel, H.M., Spaans, J.H., Davidse, L.C., and Govers, F. 1993. Increased expression of the calmodulin gene of the late blight fungus Phytophthora infestans during pathogenesis on potato. Mol. Plant. Microbe. Interact. 6: 164-172. Pieterse, C.M., van West, P., Verbakel, H.M., Brasse, P.W., van den Berg-Velthuis, G.C., and Govers, F. 1994b. Structure and genomic organization of the ipiB and ipiO gene clusters of Phytophthora infestans. Gene 138: 67-77. Proft, M., and Struhl, K. 2004. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118: 351-361. Prusky, D., and Yakoby, N. 2003. Pathogenic fungi: leading or led by ambient pH? Molecular plant pathology 4: 509-516. Rep, M., Reiser, V., Gartner, U., Thevelein, J.M., Hohmann, S., Ammerer, G., and Ruis, H. 1999. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell Biol. 19: 5474-5485. Schwartz, M.A., and Madhani, H.D. 2004. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet. 38: 725-748. Schwartz, M.A., and Madhani, H.D. 2006. Control of MAPK signaling specificity by a conserved residue in the MEK-binding domain of the yeast scaffold protein Ste5. Curr. Genet. 1-13. Serrano, R., Ruiz, A., Bernal, D., Chambers, J.R., and Arino, J. 2002. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol. Microbiol. 46: 1319-1333. Spence, H.J., Dhillon, A.S., James, M., and Winder, S.J. 2004. Dystroglycan, a scaffold for the ERK-MAP kinase cascade. EMBO Rep. 5: 484-489. Stoll, S.W., Kansra, S., Peshick, S., Fry, D.W., Leopold, W.R., Wiesen, J.F., Sibilia, M., Zhang, T., Werb, Z., Derynck, R., Wagner, E.F., and Elder, J.T. 2001. Differential utilization and localization of ErbB receptor tyrosine kinases in skin compared to normal and malignant keratinocytes. Neoplasia 3: 339-350. Sugiura, R., Kita, A., Shimizu, Y., Shuntoh, H., Sio, S.O., and Kuno, T. 2003. Feedback regulation of MAPK signalling by an RNA-binding protein. Nature 424: 961-965. Takatsume, Y., Izawa, S., and Inoue, Y. 2006. Methylglyoxal as a Signal Initiator for Activation of the Stress-activated Protein Kinase Cascade in the Fission Yeast Schizosaccharomyces pombe. J. Biol. Chem. 281: 9086-9092. Tani, S., and Judelson, H. 2006. Activation of Zoosporogenesis-Specific Genes in Phytophthora infestans Involves a 7-Nucleotide Promoter Motif and Cold-Induced Membrane Rigidity. Eukaryot. Cell 5: 745-752. Tani, S., Yatzkan, E., and Judelson, H.S. 2004. Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe. Interact. 17: 330-337. Tani, S., Kim, K.S., and Judelson, H.S. 2005. A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet. Biol. 42: 42-50. Tanoue, T., and Nishida, E. 2003. Molecular recognitions in the MAP kinase cascades. Cell Signal. 15: 455-462. Tripathy, S., Pandey, V.N., Fang, B., Salas, F., and Tyler, B.M. 2006. VMD: a community annotation database for oomycetes and microbial genomes. Nucleic. Acids Res. 34: D379-381. Tsai, Y. P. 1991. List of plant diseases in Taiwan. The Plant Protection Society of the Republic of China and The Phyotopathological Society of the Republic of China. 604 pp. Upadhya, R., Lee, J., and Willis, I.M. 2002. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol. Cell 10: 1489-1494. van West, P., Kamoun, S., van 't Klooster, J.W., and Govers, F. 1999. Internuclear gene silencing in Phytophthora infestans. Mol. Cell 3, 339-348. Vasudevan, S., Garneau, N., Tu Khounh, D., and Peltz, S.W. 2005. p38 mitogen-activated protein kinase/Hog1p regulates translation of the AU-rich-element-bearing MFA2 transcript. Mol. Cell Biol. 25: 9753-9763. Vautard-Mey, G., and Fevre, M. 2003. Carbon and pH modulate the expression of the fungal glucose repressor encoding genes. Curr. Microbiol. 46: 146-150. Waterhouse, G.M. 1963. Key to the species of Phytophthora de Bary. Mycol. pap. 92: 1-22. Widmann, C., Gibson, S., Jarpe, M.B., and Johnson, G.L. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143-180. Wojda, I., Alonso-Monge, R., Bebelman, J.P., Mager, W.H., and Siderius, M. 2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149: 1193-1204. Xu, J.R. 2000. Map kinases in fungal pathogens. Fungal Genet. Biol. 31: 137-152. Xu, J.R., and Hamer, J.E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10: 2696-2706. Xue, T., Nguyen, C.K., Romans, A., and May, G.S. 2004. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot. Cell 3: 557-560. Yale, J., and Bohnert, H.J. 2001. Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276: 15996-16007. Yamauchi, J., Takayanagi, N., Komeda, K., Takano, Y., and Okuno, T. 2004. cAMP-pKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium. Mol. Plant Microbe. Interact. 17: 1355-1365. Yan, H.Z., Huang, C. Y., and Liou, R. F. 2006. The MAP kinase pathway involved in the pathogenesis of Phytophthora parasitica. International molecular mycology conference. Yan, H.Z., and Liou, R.F. 2005. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 42: 339-350 Yan, H.Z., and Liou, R.F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal. Genet. Biol. Yin, X.L., Chen, S., Yan, J., Hu, Y., and Gu, J.X. 2002. Identification of interaction between MEK2 and A-Raf-1. Biochim. Biophys. Acta. 1589: 71-76. Yoshimi, A., Kojima, K., Takano, Y., and Tanaka, C. 2005. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryot. Cell 4: 1820-1828. Zheng, L., Campbell, M., Murphy, J., Lam, S., and Xu, J.R. 2000. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol. Plant Microbe. Interact. 13: 724-732. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33145 | - |
dc.description.abstract | Phytophthora parasitica Dastur (=P. nitcotianae Breda de Haan) 是一種卵菌綱的植物病原菌,分布於全球,可感染多種植物,包括蔬菜類、果樹類、觀賞植物及樹木等,包含多種重要的經濟作物。在台灣,根據「台灣植物病害名彙」的記載,至少有49種植物受到P. parasitica 危害的紀錄,且因為P. parasitica的病害史非常短暫,於氣候條件適合的情況下在短時間內即會造成嚴重病害。因為P. parasitica 是如此重要的植物病原菌,所以我們開始探討其細胞內的訊息傳導途徑。mitogen-activated protein kinase (MAP kinase)訊息傳導途徑在真核細胞扮演著重要的角色,其傳導途徑中的成員,在演化過程中具有高度的保守性。根據植物病原真菌MAPKs的保守性序列,我們在P. parasitica找到四個MAPK基因,分別命名為ppmk1a、 ppmk1b、 ppmk2及ppmk3。為了探討其在P. parasitica所扮演的角色,我利用real-time quantitative reverse transcriptase-PCR來探討其RNA表現情形,結果發現在無性世代中只有ppmk2 在 sporangia 時期會被誘導表現,此外在酸性環境及高滲透壓下都會被誘導表現,ppmk3則會受到高滲透壓、特定碳素源及10 mM cAMP等誘導表現,此結果顯示ppmk2及ppmk3所參與的訊息傳導途徑與外界環境的刺激有相關,且ppmk2及ppmk3 RNA的表現會受到相同訊息的誘導,所以這兩個MAPK所參與的訊息傳導途徑可能是相關的。另外,我們利用E. coli表現ppmk1a、 ppmk1b、 ppmk2及ppmk3重組蛋白,以in vitro kinase assay 分析其磷酸化活性,發現ppmk3重組蛋白具有對Elk1磷酸化的活性。我亦利用yeast two-hybrid system釣取與ppmk1a、 ppmk1b、 ppmk2及ppmk3具有交互作用的蛋白,篩選出來的結果待進一步的分析。最後,我也嘗試了在P. parasitica建立有效的轉殖方法。 | zh_TW |
dc.description.abstract | Phytophthora parasitica Dastur (=P. nitcotianae Breda de Haan) is an Oomycete plant pathogen which causes severe disease in many economically improtant crops. According to “List of plant diseases in Taiwan”, there were at least 49 records of the plant diseases caused by P. parasitica. Since P. parasitica is an important plant pathogen, we are interested in the signal transduction mechanism of P. parasitica. Mitogen-activated protein kinase (MAP kinase) pathways operate at the core of eukaryotic signal transduction networks, and their component kinases have been highly conserved through evolution. Four MAP kinases that are homologous to fungal MAP kinases were cloned from P. parasitica and designated as ppmk1a, ppmk1b, ppmk2, and ppmk3, respectively. In order to investigate their roles, expression of these genes in different life stages of P. parasitica was analyzed by real-time quantitative reverse transcriptase-PCR. The results indicated expressions of all four genes were induced in the process of plant infection, while ppmk2 were expressed only in the stage of sporangia. Moreover, while expression of ppmk2 was induced in response to acidic pH and osmotic stress, ppmk3 was induced in response to osmotic stress, high concentration of cAMP and specific carbon sources including sorbitol, glycerol and pectin. It was thus suggested that ppmk2 and ppmk3 were involved in the signaling pathways of P. parasitica in response to different environmental signals. To analyze the kinase activity of these MAPKs, in vitro kinase assay was performed using recombinant proteins obtained from E. coli. The result indicated that Ppmk3 exhibited kinase activity toward an exogenous substrate. Furthermore, yeast two-hybrid system was employed to screen genes which might interact with ppmk1a, ppmk1b, ppmk2 or ppmk3. Putative functions of proteins encoded by these genes will be discussed. In order to know the function and regulatory mechanism of the MAP kinase signaling pathways, I have also tried to establish a transformation method for P. parasitica. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:26:43Z (GMT). No. of bitstreams: 1 ntu-95-R93633002-1.pdf: 629673 bytes, checksum: 91a24c710e373edcfcf6e4529e812b2e (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目錄
Abstract…………………………………………………………...i 中文摘要……………………………………………………………iii 前言……………………………………..…………………………iv 壹、前人研究………………………………………………………1 一、疫病菌 Phytophthora paracitica 病理相關研究…1 二、真核生物之 Mitogen-Activated Protein Kinases (MAP kinases) 訊息傳導途徑相關研究 ………………………………4 三、哺乳動物 MAPK 訊息傳導途徑之相關研究………….5 四、模式生物酵母菌MAP kinase訊息傳導的相關研究 …5 五、模式生物酵母菌環境滲透壓與Hog1訊息傳導途徑的相關研究 .6 六、MAP kinase 訊息傳導途徑於其他植物病原真菌的相關研究.…7 七、疫病菌之訊息傳導相關研究………………………………8 貳、材料與方法……………………………….……………………..10 一、實驗菌株及培養條件………………………………………10 二、ppmk1a、ppmk1b、ppmk2及 ppmk3 在無性世代之基因表現分析………10 三、ppmk1a、ppmk1b、ppmk2及 ppmk3在不同逆境下之基因表現分析……13 四、ppmk1a、ppmk1b、ppmk2及 ppmk3在不同碳素源下之基因表現分析…..16 五、ppmk1a、ppmk1b、ppmk2及 ppmk3在cAMP處裡下之基因表現分析…18 六、利用E. coli 表現Ppmk1a、Ppmk1b、Ppmk2及 Ppmk3重組蛋白………19 七、Ppmk1a、Ppmk1b、Ppmk2及 Ppmk3重組蛋白自體磷酸化及磷酸化活性之測試……………………………………………………22 八、以CytoTrap® 系統釣取與 Ppmk1a、Ppmk1b、Ppmk2及 Ppmk3 蛋白具有交互作用的蛋白……………………………………22 九、以in vitro pull-down assay 分析Villin3與Ppmk2的交互作用……………25 十、Ppmk2 及 Ppmk3 於P. parasitica之轉殖(transformation)試驗…27 參、結果…………………………………………….…………………31 一、ppmk1a、ppmk1b、ppmk2及 ppmk3 在無性世代之基因表現分析………31 二、環境滲透壓對ppmk1a、ppmk1b、ppmk2及ppmk3 基因表現的影響……31 三、環境酸鹼值對ppmk1a、ppmk1b、ppmk2及ppmk3 基因表現的影響……32 四、溫度對ppmk1a、ppmk1b、ppmk2及ppmk3 基因表現的影響……………32 五、不同碳素源對ppmk1a、ppmk1b、ppmk2及ppmk3 基因表現的影響……32 六、ppmk1a、ppmk1b、ppmk2及ppmk3在cAMP處裡下基因表現的影響…..33 七、利用E. coli表現Ppmk1a、Ppmk1b、Ppmk2及Ppmk3重組蛋白及純化…..33 八、Ppmk1a、Ppmk1b、Ppmk2及Ppmk3重組蛋白自體磷酸化及磷酸化活性..34 九、分析與 Ppmk1a、Ppmk1b、Ppmk2及Ppmk3蛋白具有交互作用的蛋白.34 十、以in vitro pull-down assay 分析Villin3與Ppmk2的交互作用……………35 十一、Ppmk2 及 Ppmk3 轉型試驗………………………………35 肆、討論………………………………….…………………………37 一、影響ppmk1a、ppmk1b、ppmk2及ppmk3 基因表現量的因子探討……..37 二、cAMP對ppmk1a、ppmk1b、ppmk2及ppmk3 基因表現量的影響…39 三、Ppmk1a、Ppmk1b、Ppmk2及 Ppmk3重組蛋白磷酸化活性的探討40 四、與Ppmk1a、Ppmk1b、Ppmk2及Ppmk3蛋白具交互作用的蛋白之分析...40 五、Ppmk2 及 Ppmk3 轉型試驗………………………………41 六、P. parasitica訊息傳等途徑……………………………42 伍、參考文獻…………………….…………….……………………43 陸、 表………………..........................................52 柒、圖…………………………………………………………………56 附錄……………………………………………………………………72 | |
dc.language.iso | zh-TW | |
dc.title | 疫病菌 Phytophthora parasitica mitogen-activated protein kinases 之功能性分析 | zh_TW |
dc.title | Functional analysis of mitogen-activated protein kinases from Phytophthora parasitica | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾顯雄,吳蕙芬,朱善德,沈湯龍 | |
dc.subject.keyword | 疫病菌,訊息傳導, | zh_TW |
dc.subject.keyword | Phytophthora,MAPK, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 614.92 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。