Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33116
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李存修(Tsun-Siou Lee)
dc.contributor.authorShu-Hsiu Chenen
dc.contributor.author陳書修zh_TW
dc.date.accessioned2021-06-13T04:25:36Z-
dc.date.available2006-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citationBlack, F. (1975). Fact and fantasy in the use of options. Financial Analysts Journal, 31, 684–701.
Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.
Blair, B., Poon, S., and Taylor, S.J. (2001). Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High-Frequency Index Returns. Journal of Econometrics, 105, 5–26.
Chiang, M. (2004). The Information Content of TAIEX Options Implied Volatility Index- Empirical Study of New VIX. Thesis, National Taiwan University.
Christensen, B.J. and Prabhala, N.R. (1998). The Relation Between Implied and Realized Volatility. Journal of Financial Economics, 50, 125–150.
Copeland, M. M. and Copeland, T. E. (1999). Market Timing: Style and Size Rotation Using the VIX. Financial Analysts Journal, 55, 73–81.
Corrado, C. J., and Su, T. (1996). Skewness and kurtosis in S&P 500 Index returns implied by option prices. Journal of Financial Research, 19, 175–192.
Corrado, C. J., and Su, T. (1997). Implied Volatility Skews And Stock Index Skewness And Kurtosis Implied By S&P 500 Index Option Prices. The Journal of Derivatives, 4, 8–19.
Flemming, J. (1998). The Quality of Market Volatility Forecasts Implied by S&P 100 Index Option Prices. Journal of Empirical Finance, 5, 317–345.
Flemming, J., Ostdiek, B., and Whaley, R.E. (1995). Predicting Stock Market Volatility: A New Measure. The Journal of Futures Markets, 15, 265–302.
French, K., Schwert, G.W., and Stambaugh, R. (1987). Expected Stock Returns and Volatility. Journal of Financial Economics, 19, 3–30.
Giot, P. (2003). The Information Content of Implied Volatility Indices for Forecasting Volatility and Market Risk. Journal of Futures Markets, 23, 441–454
Jarrow, R., and Rudd, A. (1982). Approximate option valuation for arbitrary stochastic processes. Journal of Financial Economics, 10, 347–369.
Jorion, P. (1995). Predicting Volatility in the Foreign Exchange Market. Journal of Finance. 50, 507–528.
Ki, H., Choi, B., Chang, K., and Lee, M. (2005). Option Pricing Under Extended Normal Distribution. Journal of Futures Markets, 25, 845–871.
Lu, J. (2003). The Information Content of TAIEX Options Implied Volatility Index. Thesis, National Taiwan University.
MacBeth, J., and Merville, L. (1980). Tests of the Black-Scholes and Cox call option valuation models. Journal of Finance, 35, 285–303.
Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.
Moraux, F., Navatte, P., and Villa, C. (1999). The Predictive Power of the French Market Volatility Index: A Multi Horizons Study. European Finance Review, 2, 303–320.
Rubinstein, M. (1985). Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through August 31, 1978. Journal of Finance, 40, 445–480.
Traub, H., Ferreira, L., McArdle, M., and Antognelli, M. (2000). Fear and Greed in Global Asset Allocation. The Journal of Investing, 9, 21–37.
Whaley, R.E. (1993). Derivatives on Market Volatility: Hedging Tools Long Overdue. The Journal of Derivatives, 1, 71–84.
Whaley, R.E. (2000). The Investor Fear Gauge. The Journal of Portfolio Management, 26, 12–17.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33116-
dc.description.abstract實務上,選擇權價格所隱含之二階動差(即波動率)應用得非常普遍,但有關所隱含三階動差(偏態)及四階動差(峰態)之研究則較為少見。衍生性商品交易之主要經濟功能之一為“價格發現”,就選擇權而言,此一發現功能尚可擴及到其他母數。如果市場參與者尚未能發現這些資訊,那麼先佔者便會有資訊之優勢。
本研究即採用2005年各交易日的選擇權日內交易資料,利用Jarrow-Rudd模型及線性插補,萃取出每交易日選擇權所隱含28天的標準差、偏態及峰態,先探討分配的特徵,再利用迴歸模型,以實證的角度,檢定這些隱含動差對未來股價指數的解釋能力。所得之結論簡單歸納如下:
1. 選擇權隱含分配大致為右偏及低闊峰。
2. 隱含偏態及峰態,無論是個別或聯合而言,對於一天和一週後的股價指數皆具有顯著的解釋能力。
3. 在排除共線性的情況下,隱含波動率、偏態和峰態三者共同對於未來一天和一週的股價指數具有預測解釋能力;其中隱含波動率對於未來股價指數有正向關係,而隱含偏態及峰態兩者對於未來股價指數均呈現負向關係。另外,在此模型下,波動率對於股價指數預測的不對稱性並不顯著。
4. 在排除共線性的情況下,隱含偏態和峰態對未來一天和一週的隱含波動率亦有解釋能力,隱含偏態對於未來的波動率有負向關係,而隱含峰態則對於未來的波動率有正向關係。
zh_TW
dc.description.abstractPractically, the application of options implied second moment, implied volatility, is very popular, but the study of implied third moment, skewness, and fourth moment, kurtosis, is seldom. One of the main economic functions of trading derivatives is to “mine” the market price. With regard to options, the function of mining price can be extended to other parameters. If the participators in the market did not find such useful information, the first movers will be benefited by the information.
This research uses the intraday data of Taiwan Stock Exchange Capitalization Weighted Index (TAIEX) call options of each trading day in 2005 and employs Jarrow-Rudd model and linear interpolation to extract 28-day implied volatility, skewness, and kurtosis. Then, use linear regression empirically to check the relation between options implied moments and the stock index one trading day and one week ahead. In substance, the conclusions are as follows,
1. Options implied distribution is positively-skewed and platykutic generally.
2. If we use implied skewness and/or implied kurtosis as independent variable(s), and the stock index some trading day(s) ahead as dependent variable, the model is significant.
3. Implied second, third, fourth moments together have good explanatory power to the underlying stock index one and five trading day(s) ahead. The asymmetry phenomenon that the rise or the drop of implied standard deviation will not significantly affect stock index.
4. Implied skewness and kurtosis together have explanatory power to future implied standard deviation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:25:36Z (GMT). No. of bitstreams: 1
ntu-95-R93723067-1.pdf: 414446 bytes, checksum: 4a28f32dc93923952662715b91e8d726 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsI. Introduction 1
II. Literature Review 3
III. The Model and the Methodology 6
III.1 Jarrow-Rudd Model 6
III.2 Estimation of Implied Moments from the Models 9
III.3 The Data 12
IV. Empirical Researches 15
IV.1 Descriptive Statistics and Characteristics of Parameters 15
IV.2 The Predictive Power of Implied Moments with Respect to Stock Index 17
IV.3 Joint Predictive Power of Implied Moments with Respect to Stock Index 21
IV.4 Asymmetric Effects of Implied Moments 26
IV.5 Interrelationship among Implied Moments 28
V. Conclusion 32
Reference 34
dc.language.isoen
dc.title台指選擇權隱含波動率、偏態及峰態之資訊內涵zh_TW
dc.titleThe Information Content of TAIEX Options Implied Volatility, Skewness, and Kurtosisen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡錦堂(Jiing-Tarng Tsay),林丙輝(Bing-Huei Lin)
dc.subject.keyword選擇權,隱含波動率,隱含偏態,隱含峰態,股價指數預測,zh_TW
dc.subject.keywordOption,Implied Volatility,Implied Skewness,Implied Kurtosis,Prediction of Stock Index,en
dc.relation.page36
dc.rights.note有償授權
dc.date.accepted2006-07-22
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
404.73 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved