請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33106完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王勝德 | |
| dc.contributor.author | Ching-Hua Yu | en |
| dc.contributor.author | 余慶華 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:25:13Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2006-07-21 | |
| dc.identifier.citation | [1] R. Shirdokar, J. Kabara, and P. Krishnamurthy, 'A QoS-based Indoor Wireless
Data Network Design for VoIP,' in Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, Volumn 4, October 2001 Page(s): 2594 - 2598. [2] IEEE. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cations,' IEEE Standard 802.11, 1999. [3] IEEE 802.11b WG, Part 11, 'Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) speci cation: High-speed Physical Layer Extension in the 2.4 GHz Band', IEEE, September 1999. [4] IEEE Std. 802.11i, 'Draft Amendment to Standard for Telecommunications and Information Exchange between Systems-lan/man Speci c Requirements, Part 11: Wireless Medium Access Control and Physical Layer (phy) Speci cations: Medium Access Control (MAC) Security Enhancements,' May 2003. [5] 'IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cations High-speed Physical Layer in the 5 GHz Band,' 1999. [6] Alimian, A. and B. Aboba, 'Analysis of Roaming Techniques,' IEEE Contribu- tion 802.11-04/0377r1, March 2004. [7] A. Mishra, M. Shin, and W. Arbaugh, 'An Empirical Analysis of the IEEE 802.11 Mac Layer Hando Process,' ACM SIGCOMM Comp. Commun. Review, Volumn 33, April 2003 Page(s): 93 - 102. [8] H. Velayos and G. Karlsson, 'Techniques to Reduce IEEE 802.11b MAC Layer Handover Time', IEEE ICC, June 2004. [9] M. Shin, A. Mishra, and W. Arbaugh, 'Improving the Latency of 802.11 Hand- o s using Neighbor Graphs,' in Proc. ACM Mobisys 2004, September 2004. [10] S. Shin, A. Forte, A. Rawat, and H. Schulzrinne, 'Reducing MAC Layer Hando Latency in IEEE 802.11 Wireless LANs,' ACM MobiWac 2004, October 2004. [11] A. Mishra, M. Shin and W. Arbaugh, 'Proactive Key Distribution using Neighbor Graphs,' IEEE Wireless Communications, Volumn 11, February 2004 Page(s): 26 - 36. [12] S. Pack, H. Jung, T. Kwon, and Y. Choi, 'A Selective Neighbor Caching Scheme for Fast Hando in IEEE 802.11 Networks,' Communications, 2005, ICC 2005, Volume 5, 16-20 May 2005 Page(s): 3599 - 3603. [13] 'IEEE Recommended Practice for Multi-Vendor Access Point Interoperability via an Inter-Access Point Protocol Across Distribution Systems Supporting IEEE 802.11 Operation,' IEEE Draft 802.1f/D3, January 2002. [14] Matthew Gast, 802.11 Wireless Networks: The De nitive Guide, O'Reilly, Chapter 7.3.3. [15] C. He, J. C. Mitchell, 'Analysis of the 802.11i 4-Way Handshake,' The Third ACM International Workshop on Wireless Security (WiSe'04), October 2004 Page(s): 43 - 50. [16] S. Waharte, K. Ritzenthaler and R. Boutaba, 'Selective Active Scanning for Fast Hando in WLAN Using Sensor Networks,' Mobile and Wireless Commu- nication Networks, October 2004 Page(s): 59 - 70. [17] A. R. Prasad and H. Wang, 'Roaming key based fast handover in WLANs,' Wireless Communications and Networking Conference, 2005, Volume 3, 13-17 March 2005 Page(s): 1570 - 1576. [18] C. Basios,'De ning Architecture and Key Issues towards WLAN Roaming,' Telecommunications, 2005, ConTEL 2005, Volume 1, 15-17 June 2005 Page(s): 225 - 230. [19] M. Long, C.-H. Wu, and JD Irwin, 'Localised authentication for inter-network roaming across wireless LANs,' Volume 151, Issue 5, 24 October 2004 Page(s): 496 - 500. [20] D. Tsoumakos and N. Roussopoulos, Adaptive Probabilistic Search for Peer- to-Peer Networks , Peer-to-Peer Computing, 2003. (P2P 2003), 1-3 September 2003 Page(s): 102 - 109. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33106 | - |
| dc.description.abstract | Handoff latency is a severe bottleneck to guarantee the service continuity in IEEE 802.11 WLAN Network, which is a requirement for voice and multimedia applications. The handoff latency of IEEE 802.11 can be classified into four types of latency phases, Scanning Latency, Authentication Latency, Association Latency and IEEE 802.11i Authentication Latency. Several schemes have been proposed to reduce the handoff latency. However, these schemes result in redundant messages overhead in the network, lack of handoff zone initialization mechanism or require computing power in the AAA (Authentication, Authorization, and Access control) Server. In this paper, we propose an Adaptive Mobility Prediction method to achieve low handoff latency, a self-configure predictability index to create a Candidate Node List of popular roaming Access Points, which balance the pre-authentication key distribution message overhead in the WLAN network and computing capability requirement on the AAA Server. Simulation results present up to 82.4% message reduction in comparison to the Proactive Neighbor Caching scheme and 33.2% enhancement in accuracy in comparison to the Selective Neighbor Caching schemes,meanwhile maintaining 54.1% of messages overhead. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:25:13Z (GMT). No. of bitstreams: 1 ntu-94-P93921008-1.pdf: 2384274 bytes, checksum: 7ff0b334ba5e9fc9c49d213b1550fe7f (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1 Background 1
1.1 Scanning Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Active Scan Latency . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Passive Scan Latency . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Authentication Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Open System . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Shared Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Association Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 IAPP Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 The IEEE 802.1x Latency . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Related Works 8 2.1 Scanning Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Neighbor Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Neighbor Graph Prune . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Authentication Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 IEEE 802.1X Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 Proactive Neighbor Caching . . . . . . . . . . . . . . . . . . . 10 2.3.2 Neighbor Graph Caching . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Selective Neighbor Caching . . . . . . . . . . . . . . . . . . . 11 3 Problem Analysis 12 3.1 Reducing Beacon Interval . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Changing MinChannelTime and MaxChannelTime . . . . . . . . . . 12 3.3 Proactive Neighbor Caching . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Neighbor Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Selective Neighbor Caching . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Proposed Scheme 15 4.1 Adaptive Mobility Prediction . . . . . . . . . . . . . . . . . . . . . . 15 4.2 OOBND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.1 Candidate List . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1.1 Updating the Neighbor Edge Index of a Candidate List . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1.2 Updating the Popularity Index of an Optimistic Can- didate List . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.1.3 Updating the Popularity Index of a Pessimistic Can- didate List . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.1.4 Popularity Ratio . . . . . . . . . . . . . . . . . . . . 17 4.2.1.5 Hando Prediction Control . . . . . . . . . . . . . . 18 4.3 AMP enhanced Active Scan . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 AMP enhanced Authentication/Association . . . . . . . . . . . . . . 19 4.5 AMP reduced IEEE 802.1X Latency . . . . . . . . . . . . . . . . . . 19 4.6 OOBND Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6.1 OOBND Command . . . . . . . . . . . . . . . . . . . . . . . . 21 4.6.2 OOBND Element . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Simulation 24 5.1 Experiment Conguration . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.1 Proactive Neighbor Caching . . . . . . . . . . . . . . . . . . . 25 5.2.2 Selective Neighbor Caching . . . . . . . . . . . . . . . . . . . 26 5.2.3 Adaptive Mobility Prediction . . . . . . . . . . . . . . . . . . 26 5.2.4 Comparison of AMP and SNC . . . . . . . . . . . . . . . . . . 27 6 Conclusions 28 Bibliography 29 | |
| dc.language.iso | en | |
| dc.subject | NA | zh_TW |
| dc.subject | Handoff Lantency | en |
| dc.subject | Mobility | en |
| dc.subject | Adaptive Prediction | en |
| dc.subject | IEEE802.11i Authentication Latency | en |
| dc.subject | Authentication Latency | en |
| dc.subject | Scanning Latency | en |
| dc.title | IEEE 802.11 無線網路快速換手的自適性行動預測 | zh_TW |
| dc.title | Adaptive Mobility Prediction for Fast Handoff in IEEE 802.11 WLAN Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖婉君,謝宏昀,魏宏宇 | |
| dc.subject.keyword | NA, | zh_TW |
| dc.subject.keyword | Handoff Lantency,Scanning Latency,Authentication Latency,IEEE802.11i Authentication Latency,Adaptive Prediction,Mobility, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
