Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33047
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳蕙芬
dc.contributor.authorPei-I Linen
dc.contributor.author林佩宜zh_TW
dc.date.accessioned2021-06-13T04:23:05Z-
dc.date.available2008-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citation1. 余建泓, 大腸桿菌 ClpQ 蛋白質的C端為負責其單元體間交互作用的區段. 農業化學研究所碩士論文, 2004.
2. 施如珊, 大腸桿菌熱休克蛋白 ClpY I domain 之突變蛋白. 農業化學研究所碩士論文, 2004.
3. 張道遠, 分析大腸桿菌 ClpYQ 蛋白酶之 ClpY 之功能性羧基端. 農業化學研究所碩士論文, 2004.
4. 陳盟靜, 以酵母菌雙雜交系統分析大腸桿菌 ClpYQ 蛋白酶中 ClpQ/ClpQ 次單元體的互相作用並尋找和 ClpY 互相作用的分子. 農業化學研究所碩士論文, 2002.
5. 郭美雪, 大腸桿菌中 ClpYQ 蛋白酶對RcsA的調控. 農業化學研究所碩士論文, 2001.
6. 李宜穎, 以酵母菌裝雜交系統進行大腸桿菌 ClpYQ 蛋白酶之小分子單元體間及專一性基質相互作用之研究, 農業化學研究所碩士論文. 2000.
7. Azim, M. K., Goehring, W., Song, H. K., Ramachandran, R., Bochtler, M. & Goettig, P. (2005). Characterization of the HslU chaperone affinity for HslV protease. Protein Sci 14, 1357-1362.
8. Beuron, F., Maurizi, M. R., Belnap, D. M., Kocsis, E., Booy, F. P., Kessel, M. & Steven, A. C. (1998). At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J Struct Biol 123, 248-259.
9. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. (1997). Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci U S A 94, 6070-6074.
10. Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D. & Huber, R. (2000). The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800-805.
11. Bochtler, M., Song, H. K., Hartmann, C., Ramachandran, R. & Huber, R. (2001). The quaternary arrangement of HslU and HslV in a cocrystal: a response to Wang, Yale. J Struct Biol 135, 281-293.
12. Bogyo, M., McMaster, J. S., Gaczynska, M., Tortorella, D., Goldberg, A. L. & Ploegh, H. (1997). Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A 94, 6629-6634.
13. Bukau, B. (1993). Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9, 671-680.
14. Burton, R. E., Baker, T. A. & Sauer, R. T. (2005). Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol 12, 245-251.
15. Chuang, S. E., Burland, V., Plunkett, G., 3rd, Daniels, D. L. & Blattner, F. R. (1993). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134, 1-6.
16. Ebel, W. & Trempy, J. E. (1999). Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J Bacteriol 181, 577-584.
17. Ebina, T., Sato, A., Umezu, K. & other authors (1983). Prevention of rotavirus infection by cow colostrum antibody against human rotaviruses. Lancet 2, 1029-1030.
18. Evangelista, C., Lockshon, D. & Fields, S. (1996). The yeast two-hybrid system: prospects for protein linkage maps. Trends Cell Biol 6, 196-199.
19. Fields, S., & O.K. Song. (1993). A novel genetic system to detect protein-protein interactions. Nature 340, 245 – 256.
20. Gille, C., Goede, A., Schloetelburg, C., Preissner, R., Kloetzel, P. M., Gobel, U. B. & Frommel, C. (2003). A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol 326, 1437-1448.
21. Gimeno, R. E., Espenshade, P. & Kaiser, C. A. (1996). COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol Biol Cell 7, 1815-1823.
22. Goldberg, A. L., Moerschell, R. P., Chung, C. H. & Maurizi, M. R. (1994). ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol 244, 350-375.
23. Gottesman, S., Trisler, P. & Torres-Cabassa, A. (1985). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162, 1111-1119.
24. Gottesman, S., Clark, W. P. & Maurizi, M. R. (1990). The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate. J Biol Chem 265, 7886-7893.
25. Gottesman, S. & Stout, V. (1991). Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5, 1599-1606.
26. Gottesman, S. & Maurizi, M. R. (1992). Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56, 592-621.
27. Gottesman, S., Clark, W. P., de Crecy-Lagard, V. & Maurizi, M. R. (1993). ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem 268, 22618-22626.
28. Gottesman, S. (1996). Proteases and their targets in Escherichia coli. Annu Rev Genet 30, 465-506.
29. Gottesman, S., Maurizi, M. R. & Wickner, S. (1997). Regulatory subunits of energy-dependent proteases. Cell 91, 435-438.
30. Gottesman, S., Wickner, S. & Maurizi, M. R. (1997). Protein quality control: triage by chaperones and proteases. Genes Dev 11, 815-823.
31. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. (1998). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338-1347.
32. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121-4130.
33. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. (1993). Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791-803.
34. Huang, H. & Goldberg, A. L. (1997). Proteolytic activity of the ATP-dependent protease HslVU can be uncoupled from ATP hydrolysis. J Biol Chem 272, 21364-21372.
35. Ishikawa, T., Maurizi, M. R., Belnap, D. & Steven, A. C. (2000). Docking of components in a bacterial complex. Nature 408, 667-668.
36. Jones, C. & Holland, I. B. (1985). Role of the SulB (FtsZ) protein in division inhibition during the SOS response in Escherichia coli: FtsZ stabilizes the inhibitor SulA in maxicells. Proc Natl Acad Sci U S A 82, 6045-6049.
37. Karata, K., Verma, C. S., Wilkinson, A. J. & Ogura, T. (2001). Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Mol Microbiol 39, 890-903.
38. Katayama, T., Kubota, T., Takata, M., Akimitsu, N. & Sekimizu, K. (1996). Disruption of the hslU gene, which encodes an ATPase subunit of the eukaryotic 26S proteasome homolog in Escherichia coli, suppresses the temperature-sensitive dnaA46 mutation. Biochem Biophys Res Commun 229, 219-224.
39. Katayama-Fujimura, Y., Gottesman, S. & Maurizi, M. R. (1987). A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem 262, 4477-4485.
40. Kessel, M., Wu, W., Gottesman, S., Kocsis, E., Steven, A. C. & Maurizi, M. R. (1996). Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett 398, 274-278.
41. Khattar, M. M. (1997). Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS Lett 414, 402-404.
42. Kuo, M. S., Chen, K. P. & Wu, W. F. (2004). Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology 150, 437-446.
43. Kwon, A. R., Trame, C. B. & McKay, D. B. (2004). Kinetics of protein substrate degradation by HslUV. J Struct Biol 146, 141-147.
44. Lee, Y. Y., Chang, C. F., Kuo, C. L., Chen, M. C., Yu, C. H., Lin, P. I. & Wu, W. F. (2003). Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J Bacteriol 185, 2393-2401.
45. Li, X., Keskin, O., Ma, B., Nussinov, R. & Liang, J. (2004). Protein-protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol 344, 781-795.
46. Luban, J. & Goff, S. P. (1995). The yeast two-hybrid system for studying protein-protein interactions. Curr Opin Biotechnol 6, 59-64.
47. Lupas, A., Zwickl, P. & Baumeister, W. (1994). Proteasome sequences in eubacteria. Trends Biochem Sci 19, 533-534.
48. Lupas, A. N. & Martin, J. (2002). AAA proteins. Curr Opin Struct Biol 12, 746-753.
49. Miller, J. H., Shinaberger, J. H. & Gardner, P. W. (1972). Experience with a new plate type dialyzer. Proc Clin Dial Transplant Forum 2, 50-51.
50. Missiakas, D., Schwager, F., Betton, J. M., Georgopoulos, C. & Raina, S. (1996). Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. Embo J 15, 6899-6909.
51. Mizusawa, S. & Gottesman, S. (1983). Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci U S A 80, 358-362.
52. Munavar, H., Zhou, Y. & Gottesman, S. (2005). Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. J Bacteriol 187, 4739-4751.
53. Nakata, Y., Tang, X. & Yokoyama, K. K. (1997). Preparation of competent cells for high-efficiency plasmid transformation of Escherichia coli. Methods Mol Biol 69, 129-137.
54. Porankiewicz, J., Wang, J. & Clarke, A. K. (1999). New insights into the ATP-dependent Clp protease : Escherichia coli and beyond. Mol Microbiol 32, 449-458.
55. Park, E., Rho, Y. M., Koh, O. J. & other authors (2005). Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem 280, 22892-22898.
56. Park, S. C., Jia, B., Yang, J. K., Van, D. L., Shao, Y. G., Han, S. W., Jeon, Y. J., Chung, C. H. & Cheong, G. W. (2006). Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol Cells 21, 129-134.
57. Ramachandran, R., Hartmann, C., Song, H. K., Huber, R. & Bochtler, M. (2002). Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc Natl Acad Sci U.S.A 99, 7396-7401.
58. Rohrwild, M., Coux, O., Huang, H. C., Moerschell, R. P., Yoo, S. J., Seol, J. H., Chung, C. H. & Goldberg, A. L. (1996). HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci U S A 93, 5808-5813.
59. Rohrwild, M., Pfeifer, G., Santarius, U., Muller, S. A., Huang, H. C., Engel, A., Baumeister, W. & Goldberg, A. L. (1997). The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol 4, 133-139.
60. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989). Preparation and transformation of competent E. coli. Molecular Cloning : A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 1.74-1.84.
61. Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21, 289-296.
62. Segal, G. & Ron, E. Z. (1998). Regulation of heat-shock response in bacteria. Ann N Y Acad Sci 851, 147-151.
63. Seol, J. H., Yoo, S. J., Shin, D. H., Shim, Y. K., Kang, M. S., Goldberg, A. L. & Chung, C. H. (1997). The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur J Biochem 247, 1143-1150.
64. Seong, I. S., Oh, J. Y., Yoo, S. J., Seol, J. H. & Chung, C. H. (1999). ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett 456, 211-214.
65. Seong, I. S., Oh, J. Y., Lee, J. W., Tanaka, K. & Chung, C. H. (2000). The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett 477, 224-229.
66. Seong, I. S., Kang, M. S., Choi, M. K., Lee, J. W., Koh, O. J., Wang, J., Eom, S. H. & Chung, C. H. (2002). The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J Biol Chem 277, 25976-25982.
67. Shin, D. H., Yoo, S. J., Shim, Y. K., Seol, J. H., Kang, M. S. & Chung, C. H. (1996). Mutational analysis of the ATP-binding site in HslU, the ATPase component of HslVU protease in Escherichia coli. FEBS Lett 398, 151-154.
68. Smith, C. K., Baker, T. A. & Sauer, R. T. (1999). Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A 96, 6678-6682.
69. Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L. & Huber, R. (2000). Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci U S A 97, 14103-14108.
70. Song, H. K., Bochtler, M., Azim, M. K., Hartmann, C., Huber, R. & Ramachandran, R. (2003). Isolation and characterization of the prokaryotic proteasome homolog HslVU (ClpQY) from Thermotoga maritima and the crystal structure of HslV. Biophys Chem 100, 437-452.
71. Sousa, M. C., Trame, C. B., Tsuruta, H., Wilbanks, S. M., Reddy, V. S. & McKay, D. B. (2000). Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633-643.
72. Stout, V. & Gottesman, S. (1990). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172, 659-669.
73. Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D. & Gottesman, S. (1991). RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173, 1738-1747.
74. Torres-Cabassa, A. S. & Gottesman, S. (1987). Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 169, 981-989.
75. Transy, C. & Legrain, P. (1995). The two-hybrid: an in vivo protein-protein interaction assay. Mol Biol Rep 21, 119-127.
76. Wang, J., Hartling, J. A. & Flanagan, J. M. (1998). Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. J Struct Biol 124, 151-163.
77. Wang, J. (2001). A corrected quaternary arrangement of the peptidase HslV and atpase HslU in a cocrystal structure. J Struct Biol 134, 15-24.
78. Wang, J., Song, J. J., Franklin, M. C. & other authors (2001). Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177-184.
79. Wang, J., Song, J. J., Seong, I. S., Franklin, M. C., Kamtekar, S., Eom, S. H. & Chung, C. H. (2001). Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107-1116.
80. Wang, J. (2003). A second response in correcting the HslV-HslU quaternary structure. J Struct Biol 141, 7-8.
81. Wang, J. (2004). Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J Struct Biol 148, 259-267.
82. Wang, J., Rho, S. H., Park, H. H. & Eom, S. H. (2005). Correction of X-ray intensities from an HslV-HslU co-crystal containing lattice-translocation defects. Acta Crystallogr D Biol Crystallogr 61, 932-941.
83. Wehland, M. & Bernhard, F. (2000). The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275, 7013-7020.
84. Wu, W. F., Zhou, Y. & Gottesman, S. (1999). Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J Bacteriol 181, 3681-3687.
85. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. (2003). Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 278, 50182-50187.
86. Yoo, S. J., Seol, J. H., Kang, M. S. & Chung, C. H. (1996). Poly-L-lysine activates both peptide and ATP hydrolysis by the ATP-dependent HslVU protease in Escherichia coli. Biochem Biophys Res Commun 229, 531-535.
87. Yoo, S. J., Seol, J. H., Shin, D. H., Rohrwild, M., Kang, M. S., Tanaka, K., Goldberg, A. L. & Chung, C. H. (1996). Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem 271, 14035-14040.
88. Yoo, S. J., Seol, J. H., Seong, I. S., Kang, M. S. & Chung, C. H. (1997). ATP binding, but not its hydrolysis, is required for assembly and proteolytic activity of the HslVU protease in Escherichia coli. Biochem Biophys Res Commun 238, 581-585.
89. Yoo, S. J., Shim, Y. K., Seong, I. S., Seol, J. H., Kang, M. S. & Chung, C. H. (1997). Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease. FEBS Lett 412, 57-60.
90. Yoo, S. J., Kim, H. H., Shin, D. H., Lee, C. S., Seong, I. S., Seol, J. H., Shimbara, N., Tanaka, K. & Chung, C. H. (1998). Effects of the cys mutations on structure and function of the ATP-dependent HslVU protease in Escherichia coli. The Cys287 to Val mutation in HslU uncouples the ATP-dependent proteolysis by HslvU from ATP hydrolysis. J Biol Chem 273, 22929-22935.
91. Yura, T., Nagai, H. & Mori, H. (1993). Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47, 321-350.
92. Zwickl, P., Baumeister, W. & Steven, A. (2000). Dis-assembly lines: the proteasome and related ATPase-assisted proteases. Curr Opin Struct Biol 10, 242-250.
93. Zwickl, P., Seemuller, E., Kapelari, B. & Baumeister, W. (2001). The proteasome: a supramolecular assembly designed for controlled proteolysis. Adv Protein Chem 59, 187-222.
94. Zwickl, P. (2002). The 20S proteasome. Curr Top Microbiol Immunol 268, 23-41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33047-
dc.description.abstract大腸桿菌ClpQY (HslVU)是一個ATP依賴的蛋白酶,ClpQY蛋白酶包含了具ATPase活性的大蛋白分子和一個小分子的peptidase,ClpQY蛋白酶作為一伴隨蛋白質 (Chaperon) 扮演分解錯誤摺疊的蛋白質,也為一催化分解不正常的蛋白質的蛋白酶角色。ClpQ和ClpY分子由六個單元體,形成一六元環狀結構,ClpQ和ClpY分別由兩個六元環形成一像啞鈴形狀的蛋白質複合體,單一ClpY六元環結合在兩個六元環堆疊成ClpQ的兩側。本篇研究重點在ClpQ單元體間的作用如何形成穩定六元環結構 (oligomerization) 和探討ClpQ C端對ClpQY蛋白酶活性的影響。利用綠膿桿菌的clpQ基因部分區段與大腸桿菌的clpQ基因部分區段做融合的建構,以進行作用區段的確認,實驗得知ClpQ C端後段在其單元體間的作用與功能上的重要性比其中的一段二级螺旋結構 (O-helix) 顯得重要;另外再對C端區段進行隨機點突變,並以ClpQY的基質RcsA對cpsB10-lacZ正向調控的系統進行β-galactosidase的活性測試,和以MMS誘導ClpQY基質SulA觀察對細胞生長的影響結果,藉此分析ClpQ的C端是否負責在大腸桿菌中對其本身具有專一性的辨認能力;使用yeast two-hybrid系統偵測ClpQ突變株之間交互作用的情形幫助了解單元體oligomerization的穩定性。結果顯示ClpQ C端上的突變株對ClpQY蛋白酶功能上的影響並未能與其單元體之間的作用能力有一定的正相關。靠近ClpQ C端後段的三個突變位置Asp154 (D154N),Cys160 (C160A) 和Tyr162 (Y162A)在與ClpQ/ClpQ聚合一穩定結構的環境下使得ClpQY 蛋白酶活性功能受損。zh_TW
dc.description.abstractAbstract
The E. coli ClpQY (HslVU) is an ATP-dependent protease that consists of an ATPase large subunit and a peptidase small subunit. The function of ClpQY protease is as a chaperon in refolding of misfolded peptides and as a protease to catalyse the degradation of abnormal proteins as well. Six identical subunits of both ClpQ and ClpY self-assemble into an oligomeric ring and two rings of each subunit form a dumbbell shape complex, two ClpQ rings surrounded by two ClpY single rings. Construction of the fusion gene of P. aeruginosa and E. coli clpQ was used to analyse the C domain and O-helix within C domain of ClpQ for subunits oligomerization and ClpQY protease function. The further C-terminal region of ClpQ is more important in proteolytic function than O-helix which is likely important to ClpQ subunits oligomerization. The C domain region of ClpQ was randomly mutagenized and the single point mutants were selected for investigation of their in vivo function. In addition, The β-galactosidase assay of which the reporter gene (cpsB10 – lacZ) was activated by RcsA, the substrate of ClpQY, and the accumulation of cell division inhibitor, SulA, which increased the sensitivity to MMS induction of E. coli cells were both used to detect ClpQY protease function. Using yeast two-hybrid system, I explore the in vivo protein-protein interactions of the individual mutant subunits of ClpQ involved in self-oligomerization. Several mutants altering ClpQY protease activity were verified. Mutants Asp154 (D154N), Cys160 (C160A) and Tyr162 (Y162A) carrying mutation located in the C– terminal region of ClpQ and have defective proteolytic function based on cpsB10-lacZ expression and MMS test.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:23:05Z (GMT). No. of bitstreams: 1
ntu-95-R92623023-1.pdf: 862024 bytes, checksum: e7040668979b7b34f3410e601d975314 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents壹、 前言 1
一、 伴隨蛋白質和蛋白酶 1
二、 ClpQY two-component protease 2
三、 ClpQY蛋白酶結構 3
四、 ClpQY蛋白酶與基質的研究 4
(1) SulA (suppressor of ultraviolet sensitivity A) 5
(2) RcsA (regulator of capsule synthesis A) 5
(3) RpoH (σ32) 5
五、 近期相關研究 6
六、 研究目的 6
貳、 研究方法 7
一、實驗材料 7
(一) 菌株及質體 7
(二) 培養基 8
(三) 藥品及試劑 9
(四) 分析軟體 9
(五) 實驗相關核酸引子 9
(六) 器材設備 9
二、實驗方法 10
(一) Mini-preparation of plasmid DNA from bacteria 10
(二) Midi-preparation of plasmid DNA from bacteria 10
(三) Purification of plasmid DNA from sliced gel (Gel-M) 10
(四) Purification of PCR products 10
(五) 基因選殖 (Gene cloning) 10
1. 聚合酶連鎖反應 10
(1) ClpQ hybrid of E. coli and P. aeruginosa DNA片段增幅 11
(2) ClpQ* C端隨機突變DNA片段增幅 11
(3) 定點突變clpQ* (Gln131Leu/Asp/Ala, Ser125) 的DNA片段增幅 13
2. 限制酶作用 (Digestion) 14
(1) 載體製備 14
(2) 選殖基因製備 14
(3) 接合作用 (Ligation) 14
(4) 轉形作用 (Transformation) 14
勝任細胞的製備 (Competent cells) 14
E. coli transfomation 15
Heat shock transformation 15
Electroporation transformation 16
TSS-Transformation 16
(5) 選殖質體之確認 17
Yeast transformation 17
3. ClpQ C 端突變株篩選 18
4.以cpsB10-lacZ 間接偵測RcsA表現 18
5. Methylmethansulfonate (MMS) 之抗性分析 19
6. LacZ 報導基因於yeast two-hybrid系統中偵測 20
β-galactosidase的活性測試 20
Leu2 expression: Growth test 21
LacZ expression: X-gal test 22
7. SDS蛋白質膠體電泳 22
8. 西方式雜交法 (Western Blotting) 24
(1) 轉印 (Transfer) 24
(2) 免疫雜交 (Hybridization) 25
(3) 免疫呈色反應 (Detection) 26
Hybond ECL (Amersham) 套組 (包括Solution I及Solution II) 26
參、 研究結果 27
一、 以大腸桿菌和綠膿桿菌之雜合蛋白來確認ClpQ C端為分子聚合和ClpQY蛋白酶功能的作用區段 27
1.大腸桿菌和綠膿桿菌ClpQ雜合蛋白與ClpY蛋白酶功能之測試 27
2.大腸桿菌和綠膿桿菌ClpQ雜合蛋白與ClpY蛋白酶之MMS生長測 28
3.LacZ and leu2 expression in yeast two-hybrid system 28
二、 建構ClpQ C端缺失突變株以及功能之測試 29
三、 ClpQ 特定區段 (C端) 隨機點突變 29
1.突變株的篩選 29
2.突變株功能之測試 30
3. ClpQ 點突變株 Gln131 (Proline/Leucine/Aspartate/Alanine) 功能測試 30
4. ClpQ突變蛋白分子單元體聚合 31
肆、 討論 32
一、 以大腸桿菌和綠膿桿菌之雜合蛋白來確認ClpQ C端為分子聚合和ClpQY蛋白酶功能的作用區段 32
二、 ClpQ 特定區段 (C端) 隨機點突變 34
伍、 參考文獻 38
表次
表一、 本研究所使用的菌株及質體 45
表二、 引子對列表 46
表三、 大腸桿菌與綠膿桿菌ClpQ雜合突變蛋白於AC3112中分解基質SulA的MMS生長測試 48
表五、 ClpQ缺失突變株於AC3112中分解基質SulA的MMS生長測試 50
表六、 ClpQ C端隨機點突變株於AC3112分解基質SulA MMS生長測試 51
表七、 ClpQ (Gln131) 點突變蛋白單元體之間的交互作用 52
表八、 ClpQ (Gln131) 點突變株於AC3112分解基質SulA MMS生長測試 53
表九、 ClpQ點突變蛋白單元體間之交互作用情形 54
圖次
圖一、 大腸桿菌ClpQ分子功能區塊圖譜 56
圖二、 大腸桿菌ClpQ胺基酸序列圖譜 57
圖三、 建構大腸桿菌與綠膿桿菌clpQ突變選殖質體 58
圖四、 建構clpQ C端隨機點突變選殖質體 (pBAD33 clpQ*) 59
圖五、 細菌中報導基因cpsB10-lacZ 的表現 60
圖七、 大腸桿菌與綠膿桿菌ClpQ雜合突變蛋白於AC3112中ClpQY蛋白酶活性對cpsB10-lacZ表現的影響 62
圖八、 ClpQ缺失突變株於AC3112中ClpQY蛋白酶活性對cpsB10-lacZ表現的影響 63
圖九、 ClpQ C端隨機點突變株於AC3112中ClpQY蛋白酶活性對cpsB10-lacZ表現的影響 64
圖十、 ClpQ (Gln131) 點突變株於AC3112中ClpQY蛋白酶活性對cpsB10-lacZ表現的影響 65
圖十一、 pBAD24載體上大腸桿菌與綠膿桿菌雜合突變蛋白西方式雜交 66
圖十二、 pB42AD融合ClpQ突變蛋白之西方式雜交 67
圖十三、 pBAD33載體上ClpQ突變蛋白西方式雜交 68
圖十四、 ClpQY蛋白酶3D預測結晶結構圖 69
圖十五、 ClpQ單元體部分區段3D預測結晶結構圖 70
附表(圖)
附表一、 E. coli/P. areuginosa ClpQ 雜合蛋白單元體間交互作用 71
附表二、 ClpQ缺失突變蛋白單元體間交互作用 72
附圖一、 ClpQY蛋白酶四個六元環複合體結構 73
附圖二、大腸桿菌ClpY分子功能區塊圖譜 74
附圖三、 大腸桿菌ClpQY蛋白酶結晶結構圖 75
附圖四、 酵母菌雙雜交系統中報導基因的表現 76
dc.language.isozh-TW
dc.title大腸桿菌ClpQ蛋白分子之間的聚合和其C端的功能zh_TW
dc.titleClpQ subunit oligomerization and its C domain function in Escherichia colien
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建德,蔡珊珊,李昆達,林乃君
dc.subject.keyword蛋白&#37238,大腸桿菌,綠膿桿菌,伴隨蛋白,基質,zh_TW
dc.subject.keywordClpQY,HslVU,protease,chaperon,E. coli,P. areuginosa,ClpQ,RcsA,SulA,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2006-07-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
841.82 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved