Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周雍強
dc.contributor.authorShu-Ming Changen
dc.contributor.author張書銘zh_TW
dc.date.accessioned2021-06-13T04:22:49Z-
dc.date.available2006-07-27
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citation[1] Belt, B., “Integrating capacity planning and capacity control,” Production and Inventory Management, Vol. 17, No. 1, pp. 9-25, 1976.
[2] Bowling, S. R., M. T. Khasawneh, S. Kaewkuekool and B. R. Cho, “A markovian approach to determining optimum process target levels for a multi-stage serial production system,” European Journal of Operational Research, Vol. 159, pp. 636-650, 2004.
[3] Chen, H., J. M. Harrison, A. Mandelbaum, A. V. Ackere and L. M. Wein, “Empirical evaluation of a queueing network model for semiconductor wafer fabrication,” Operations Research, Vol. 36, No. 2, pp. 202-215, 1988.
[4] Cochran, J. K. and L. Lin, “Assembly line system dynamic behavior for high priority job order processing,” International journal of production research, Vol. 30, No. 7, pp. 1683-1697, 1992.
[5] Cochran, J. K. and L. Lin, “Compound dynamic event metamodels for electronic assembly line systems,” IIE Transactions, Vol. 25, No. 2, pp. 12-25, 1993.
[6] Connors, D. P., G. E. Feigin and D. D. Yao, “A queuing network model for semiconductor manufacturing,” IEEE Transaction on Semiconductor Manufacturing, Vol. 9, NO. 3, pp. 412-427, 1996.
[7] Cox, J. F., J. H. Blackstone and M. S. Spencer, APICS dictionary (8th). VA: American Production and Inventory Control Society, pp. 68, 1995.
[8] Craighead, C. W., J. W. Patterson and L. D. Fredendall, “Protective capacity positioning: impact on manufacturing cell performance,” European Journal of Operational Research, Vol. 134, pp. 425-438, 2001.
[9] Dümmler, M. A., “Analysis of the instationary behavior of a wafer fab during product mix changes,” Proceedings of the 2000 Winter Simulation Conference, pp. 1436–1442, 2000.
[10] Fine, C. H. and S. C. Graves, “A tactical planning model for manufacturing subcomponents of mainframe computers,” Journal of Manufacturing and Operations Management, Vol. 2, pp. 4-34, 1989.
[11] Friedman, L. W. and I. Pressman, “The metamodel in simulation analysis: can it be trusted,” Journal of the Operational Research Society, Vol. 39, No. 10, pp. 939-948, 1988.
[12] Gaonkar, R. and N. Viswanadham, “A conceptual and analytical framework for the management of risk in supply chains,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, pp. 2699-2704, 2004.
[13] Graves, S. C., “A tactical planning model for a job shop,” Operations Research, Vol. 34, No. 4, pp. 522-533, 1986.
[14] Griffiths, J., J. Williams and A. Leonenko, “Transient solution for M/Ek/1 system,” from the World Wide Web: http://www.cf.ac.uk/maths/people/griffiths, 2002.
[15] Gross, D. and C. M. Harris, Fundamentals of queueing theory (3rd). New York: John Wiley and Sons, pp. 89-93, 1985.
[16] Jeng, M. D. and X. Xie, “Modeling and performance analysis of semiconductor manufacturing systems,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 1, pp. 650-655, 1998.
[17] Karmarkar, U. S., “Capacity loading and release planning with work-in-progress (WIP) and leadtimes,” Journal of Manufacturing and Operations Management, Vol. 2, pp. 105-123, 1989.
[18] Karmarkar, U. S., “Lot sizes, lead times and in-process inventories,” Management science, Vol. 33, pp. 409-418, 1987.
[19] Kleijnen, J. P. C., “Regression metamodels for generalizing simulation results,” IEEE Transactions on Systems, Man and Cybernetics, SMC-9, No. 2, pp. 93-96, 1979.
[20] Kleijnen, J. P. C. and R. G. Sargent, “A methodology for fitting and validating metamodels in simulation,” European Journal of Operational Research, Vol. 120, pp. 14-29, 2000.
[21] Kumar, S. and P. R. Kumar, “Queueing network models in the design and analysis of semiconductor wafer fabs,” IEEE Transactions on Robotics and Automation, Vol. 17, No. 5, pp. 548-561, 2001.
[22] Kutanoglu, E. and I. Sabuncuoglu, “Routing-based reactive scheduling policies for machine failures in dynamic job shops,” International Journal of Production Research, Vol. 39, No. 14, pp. 3141-3158, 2001.
[23] Lin, L. and F. Chiu, “Manufacturing cell operating characteristics,” European journal of operational research, Vol. 69, pp. 424-437, 1993.
[24] Lin, L. and J. K. Cochran, “Estimating simulation metamodel parameters for unexpected shop floor real time events,” Computers and Industrial Engineering, Vol. 19, No. 1-4, pp. 62-66, 1990.
[25] Missbauer, H., “Aggregate order release planning for time-varying demand,” International Journal of Production Research, Vol. 40, No. 3, pp. 699-718, 2002.
[26] Nishimura, M., “Strategic inventory control for stable production,” ISSM Conference, pp. A1-A4, 1997.
[27] Odoni, A. R. and E. Roth, “An empirical investigation of the transient behavior of stationary queueing systems,” Operations Research, Vol. 31, No. 3, pp. 432-455, 1983.
[28] Parthasarathy, P. R. and M. Sharafali, “Transient solution to the many-server Poisson queue: a simple approach,” Journal of Applied Probability, Vol. 26, pp. 584-594, 1989.
[29] Sabuncuoglu, I. and M. Bayiz, “Analysis of reactive scheduling problems in a job shop environment,” European Journal of Operational Research, Vol. 126, pp. 567-586, 2000.
[30] Spier, J. and K. Kempf, ”Simulation of emergent behavior in manufacturing systems,” IEEE Advanced Semiconductor Manufacturing Conference, pp. 90-94, 1995.
[31] Stahlman, E. J. and J. K. Cochran, “Dynamic metamodeling in capacity planning,” International Journal of Production Research, Vol. 36, No. 1, pp. 197-209, 1998.
[32] Tu, Y. M., Y. H. Chao, S. H. Chang and H. C. You, “Model to determine the backup capacity of a wafer foundry,” International Journal of Production Research, Vol. 43, No. 2, pp. 339-359, 2005.
[33] White, J. A., J. W. Schmidt and G. K. Bennett, Analysis of queueing systems. New York: Academic Press, pp. 273-276, 1975.
[34] Whitt, W. and J. Abate, “Transient behavior of the M/G/1 workload process,” Operations Research, Vol. 42, No. 4, pp. 750-764, 1994.
[35] Wight, O., “Input/Output control a real handle on lead time,” Production and Inventory Management, Vol. 11, No. 3, pp. 9-31, 1970.
[36] Yu, B. and K. Popplewell, “Metamodels in manufacturing: a review,” International Journal of Production Research, Vol. 32, pp. 787-796, 1994.
[37] Zäpfel, G. and H. Missbauer, “Production planning and control (PPC) systems including load-oriented order release - problems and research perspectives,” International Journal of Production Economics, Vol. 30-31, pp. 107-122, 1993.
[38] 林時龍,晶圓廠短期動態機台調整機制,國立交通大學工業工程與管理學研究所碩士論文,新竹市,民90。
[39] 葉家佑,產品組合對平行機台工作分派效率之影響,國立台灣大學工業工程學研究所碩士論文,台北市,民94。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33039-
dc.description.abstract供應鏈係由數個節點工廠構成,因此供應鏈的生產管理需要兩個層次的分析工具:各節點的生產行為模式,以及節點間互動行為的鏈結。生產函數(production function)在經濟學是指生產之產出與資本、勞務等輸入因子之間的函數關係,同樣地,供應鏈管理所討論的生產函數是指生產工廠的績效表現與輸入因子間的函數關係,不過供應鏈管理所關切的績效指標有流程時間、產出量、需求滿足率等,輸入的因子有產能、在製品水準、投料率、設備可靠度、派工方法等,因此函數的形式更為複雜。其次,供應鏈管理所面對的生產單元(production unit)是工廠或工場,其複雜度與動態性遠超過工廠管理所面對的機器或工作站。由於輸出指標與輸入因子多元,系統內部有複雜的動態關係,設計供應鏈管理系統的第一個研究需求便是複雜生產系統單元的生產函數的建構方法。
供應鏈各節點如果處於非滿載狀態,其運作互動可以維持在較低的程度,而不致對整體績效有太過負面的影響。然而,如果節點處於滿載(full-load)狀態,又發生重大的生產變異事件,供應鏈所設定的績效目標將不再可預測或控制,這時必須啟動非為常設的援助措施,將系統引導回到原來的穩定狀態。半導體晶圓製造廠由於規模龐大,又有製程良率、設備可靠性、產品需求組合等各方面的不確定性,是非常複雜動態的生產系統,一旦出現滿載狀況必須採用動態派工、機台調派與推延設備維護等措施,以舒解瓶頸的工作負載。本文以晶圓製造廠為生產單元,建構滿載狀態的機台動態分派的生產函數。由於晶圓製造有很多不確定因素,生產狀態的情境對績效有顯著影響,本文採用後設模式(meta-model)建構生產函數。本文所描述、建構的生產函數可作為半導體供應鏈之廠商控管動態事件的基礎分析與設計工具。
zh_TW
dc.description.abstractA supply chain is consisted of multiple nodes, so supply chain management will require two modeling tools: production behavior for each node and connecting method between nodes. In economics, a production function relates throughput to capital and labor. Similarly, a production function in supply chain management describes the relationship between performance measures and production decisions in a factory. There is a need to construct production functions for complex production units before designing a system for supply chain management.
If a node in supply chain encounters significant production variations during a full-load situation, its performance will become unpredictable. Remedial measures must be activated to bring the system back to steady states. Semiconductor foundry is a very complicated production system due to its large scale and the uncertainties in process yield, machines, product demand and product mixes. When dynamic events take place in a full-load situation, new bottlenecks are created and they must be mitigated by using dynamic machine assignment or other means. In this thesis, a semiconductor plant is treated as a production unit and the dynamic machine assignment is used to construct a full-load production function. Because there are lots of uncertainties in wafer fabrication and production performances are dependent on production scenarios, the meta-modeling is taken as an approach in this research work to construct the production function. The production function described in this thesis can be used as a tool to manage dynamic events for a factory in semiconductor supply chain.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:22:49Z (GMT). No. of bitstreams: 1
ntu-95-R93546008-1.pdf: 881035 bytes, checksum: 0684cd92520ae3ffd1aaab15280a4ecd (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents謝誌 III
中文摘要 IV
英文摘要 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 問題描述 5
1.3 研究目的與核心議題 7
1.4 研究構想與期望結果 8
1.5 研究方法 9
1.6 論文架構 12
第二章 文獻回顧 14
2.1 排隊理論與隨機過程的複雜性 14
2.2 供應鏈生產函數的後設模型回顧 18
2.2.1 時間延遲模型 20
2.2.2 產出函數模型 23
2.2.3 兩種後設模型的彙整 29
2.3 生產函數的修正 30
2.3.1 Karmarkar的出清函數與輸入輸出控制之比較 30
2.3.2 機台組態規劃模型 30
第三章 滿載生產函數的後設模式 32
3.1 滿載生產函數的假設 32
3.2 動態機台分派的產能彈性:備援規劃模型 34
3.3 滿載生產函數的建構流程 36
3.3.1 機台組態之計算 37
3.3.2 瓶頸與替代機台之決定 38
3.4 產品組合情境之決定 40
3.5 滿載生產函數之係數推導 41
3.6 模型求解範例 43
3.6.1 輸入資料 43
3.6.2 模型求解 46
3.6.3 輸出結果 46
第四章 滿載生產函數之情境設計與資料分析 48
4.1 產業資料之驗證 48
4.2 滿載生產函數之實驗設計 49
4.3 實驗結果 51
4.4 推廣的滿載生產函數 54
第五章 結論與未來研究方向 59
5.1 結論 59
5.2 後續研究方向 59
參考資料 61
附錄 A: 機台資料 65
附錄 B: 機台組態計算 69
附錄 C: 標準工時驗證 72
附錄 D: 備援關係 75
附錄 E: 備援規劃模型之LINGO程式碼 76
dc.language.isozh-TW
dc.subject機台動態分派zh_TW
dc.subject半導體製造zh_TW
dc.subject滿載生產函數zh_TW
dc.subject後設模式zh_TW
dc.subjectMeta-modelen
dc.subjectDynamic machine assignmenten
dc.subjectFull-load production functionen
dc.subjectSemiconductor manufacturingen
dc.title機台動態分派的滿載生產函數之後設模式zh_TW
dc.titleA Meta-model for Full-load Production Function of Dynamic Machine Assignmenten
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正剛,陳明新,張時中,郭瑞祥
dc.subject.keyword半導體製造,滿載生產函數,後設模式,機台動態分派,zh_TW
dc.subject.keywordSemiconductor manufacturing,Full-load production function,Meta-model,Dynamic machine assignment,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2006-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
860.39 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved