Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33024
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorHao-Zhi Yanen
dc.contributor.author顏豪志zh_TW
dc.date.accessioned2021-06-13T04:22:18Z-
dc.date.available2011-07-25
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citationAnnis S. L. and Goodwin P. H. 1997. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur. J. Plant Pathol. 103:1-14.
Armand, S., Wagemaker, M. J., Sanchez-Torres, P., Kester, H. C., van Santen, Y., Dijkstra, B. W., Visser, J., and Benen, J. A.. 2000. The active site topology of Aspergillus niger endopolygalacturonase II as studied by site-directed mutagenesis. J. Biol. Chem. 275:691-696.
Bole, D. G., Hendershot, L. M., and Kearney, J. F. 1986. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102:1558-1566.
Bosques, C. J. and Imperiali, B. 2003. The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proc. Natl. Acad. Sci. U.S.A. 100:7593-7598.
Bretthauer, R.K. and Castellino, F. J. 1999. Glycosylation of Pichia pastoris-derived proteins. Biotechnol. Appl. Biochem. 30:193-200.
Broersen, K., Voragen, A. G., Hamer, R. J., and De Jongh, H. H. 2004. Glycoforms of beta-lactoglobulin with improved thermostability and preserved structural packing. Biotechnol. Bioeng. 86:78-87.
Bussink, H. J., Brouwer, K. B., de Graaff, L. H., Kester, H. C., and Visser, J. 1991. Identification and characterization of a second polygalacturonase gene of Aspergillus niger. Curr. Genet. 20:301-307.
Bussink, H. J., Buxton, F. P., Fraaye, B. A., de Graaff, L. H., and Visser, J. 1992. The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. Eur. J. Biochem. 208:83-90.
Bussink, H. J., Kester, H. C., and Visser, J. 1990. Molecular cloning, nucleotide sequence and expression of the gene encoding prepro-polygalacturonaseII of Aspergillus niger. FEBS Lett. 273:127-130.
Caprari, C., Bergmann, C., Migheli, Q., Salvi, G., Albersheim, P., Darvill, A., Cervone, F., and De Lorenzo, G. 1993. Fusarium moniliforme secretes four endopolygalacturonases derived from a single gene product. Physiol. Mol. Plant Pathol. 43:453-462.
Caprari, C., Mattei, B., Basile, M. L., Salvi, G., Crescenzi, V., De Lorenzo, G., and Cervone, F. 1996. Mutagenesis of endopolygalacturonase from Fusarium moniliforme: histidine residue 234 is critical for enzymatic and macerating activities and not for binding to polygalacturonase-inhibiting protein (PGIP). Mol. Plant Microbe Interact. 9:617-624.
Chen, P. Y., Lin, C. C., Chang. Y. T., Lin, S. C., and Chan, S.I. 2002. One O-linked sugar can affect the coil-to-β structural transition of the prion peptide. Proc. Natl. Acad. Sci. U.S.A. 99:12633-12638.
Cho, S. W., Lee, S., and Shin, W. 2001. The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. J. Mol. Biol. 311:863-878.
Collmer, A. and Keen, N. T. 1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24:383-409.
Collmer, A., Reid, J. L., and Mount, M. S. 1988. Pectic enzyme assays. Methods Enzymol. 16:329-335.
Cook, B. J., Clay, R. P., Bergmann, C. W., Albersheim, P., and Darvill, A. G.. 1999. Fungal polygalacturonases exhibit different substrate degradation patterns and differ in their susceptibilities to polygalacturonase-inhibiting proteins. Mol. Plant Microbe Interact. 12:703-711.
D'Ovidio, R., Mattei, B., Roberti, S., and Bellincampi, D. 2004. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim, Biophys, Acta. 1696:237-244.
Federici, L., Caprari, C., Mattei, B., Savino, C., Di Matteo, A., De Lorenzo, G., Cervone, F., and Tsernoglou, D. 2001. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci U.S.A. 98:13425-13430.
Ferrè, F. and Clote, P. 2005. DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res. 33:W230-232.
Fraissinet-Tachet, L., Reymond-Cotton, P., and Fevre, M. 1995. Characterization of a multigene family encoding an endopolygalacturonase in Sclerotinia sclerotiorum. Curr Genet. 29:96-99.
Götesson, A., Marshall, J. S., Jones, D. A., and Hardham A. R. 2002. Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. Mol. Plant Microbe Interact. 15:907-921.
Gray J, Picton S, Shabbeer J, Schuch W, Grierson D. 1992. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol. Biol. 19:69-87.
Guex, N., and Peitsch, M. C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723.
Hasui, Y., Fukui, Y., Kikuchi, J., Kato, N., Miyairi, K., and Okuno, T. 1998. Isolation, characterization, and sugar chain structure of endoPG Ia, Ib and Ic from Stereum purpureum. Biosci. Biotechnol. Biochem. 62:852-857.
Herron, S. R., Benen, J. A., Scavetta, R. D., Visser, J., and Jurnak, F. 2000. Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc. Natl. Acad. Sci. U.S.A. 97:8762-8769.
Isshiki, A., Akimitsu, K., Yamamoto, M., and Yamamoto, H. 2001. Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol. Plant Microbe Interact. 14:749-757.
Liou, R. F., Lee, J. T., Lee, H. C., and Ann, P. J., 2002. Analysis of Phytophthora parasitica by retrotransposon-derived DNA fingerprinting. Bot. Bull. Acad. Sin. 43:21–29.
Kammann, M., Laufs, J., Schell, J., and Gronenborn, B. 1989. Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucl. Acids Res. 17: 5404.
Kamoun, S., Klucher, K. M., Coffey, M. D., and Tyler, B. M., 1993. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. MPMI 6:573–581.
Kars, I., Krooshof, G. H., Wagemakers, L., Joosten, R., Benen, J. A., van Kan, J. A. 2005. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 43:213-225.
Korth, C., Kaneko, K., and Prusiner, S. B. 2000. Expression of unglycosylated mutated prion protein facilitates PrP(Sc) formation in neuroblastoma cells infected with different prion strains. J. Gen. Virol. 81:2555-2563.
Marshall, J. J. and Rabinowitz, M. L. 1975. Enzyme stabilization by covalent attachment of carbohydrate.
Marshall, J. J. and Rabinowitz, M. L. 1976. Preparation and characterization of a dextran-trypsin conjugate. J. Biol. Chem. 251:1081-1087.
McKeon, T. A. 1988. Activity stain for polygalacturonase. J. Chromatogr. 455:376-381.
Meldgaard, M. and Svendsen, I. 1994. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast. Microbiology. 140:159-166.
Mitra, N., Sinha, S., Ramya, T. N., and Surolia, A. 2006. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci. 31: 156-63
Miyairi, K., Fujita, T., Okuno, T., and Sawai, K. 1977. A toxic protein causative of silver-leaf disease symptoms on apple trees. Agric. Biol. Chem. 41:1897-1902.
Miyairi, K., Okuno, T., and Sawai, K. 1985. Purification and properties of endopolygalacturonase I from Stereum purpureum, a factor inducing silver-leaf symptoms on apple trees. Agric. Biol. Chem. 49:1111-1118.
Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380.
Oeser, B., Heidrich, P. M., Muller, U., Tudzynski, P., and Tenberge, K. B. 2002. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal. Genet. Biol. 36:176-186.
Pages, S., Heijne, W. H., Kester, H. C., Visser, J., and Benen, J. A. E. 2000. Subsite mapping of Aspergillus niger endopolygalacturonase II by site-directed mutagenesis. J. Biol. Chem. 275:29348-29353.
Pages, S., Kester, H. C., Visser, J., and Benen, J. A. E. 2001. Changing a single amino acid residue switches processive and non-processive behavior of Aspergillus niger endopolygalacturonase I and II. J. Biol. Chem. 276:33652-33656.
Parenicova, L., Benen, J. A., Kester, H. C., and Visser, J. 1998. pgaE encodes a fourth member of the endopolygalacturonase gene family from Aspergillus niger. Eur. J. Biochem. 251:72-80.
Parenicova, L., Benen, J. A., Kester, H. C., and Visser, J. 2000. pgaA and pgaB encode two constitutively expressed endopolygalacturonases of Aspergillus niger. Biochem. J. 345:637-644.
Pickersgill, R., Smith, D., Worboys, K., and Jenkins, J. 1998. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J. Biol. Chem. 273:24660-24664.
Prusiner S. B. 1991. Molecular biology of prion diseases. Science. 252:1515-1522.
Reymond-Cotton, P., Fraissinet-Tachet, L., Fevre, M. 1996. Expression of the Sclerotinia sclerotiorum polygalacturonase pg1 gene: possible involvement of CREA in glucose catabolite repression. Curr. Genet. 30:240-245.
Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A., and Dwek, R. A. 2001. Glycosylation and the immune system. Science 291:2370-2376.
Ruttkowski, E., Labitzke, R., Khanh, N. Q., Loffler, F., Gottschalk, M., and Jany, K. D. 1990. Cloning and DNA sequence analysis of a polygalacturonase cDNA from Aspergillus niger RH5344. Biochim. Biophys. Acta. 1087:104-106.
Sagt, C. M., Muller, W. H., van der Heide, L., Boonstra, J., Verkleij, A. J., and Verrips, C. T. 2002. Impaired cutinase secretion in Saccharomyces cerevisiae induces irregular endoplasmic reticulum (ER) membrane proliferation, oxidative stress, and ER-associated degradation. Appl. Environ. Microbiol. 68:2155-2160.
Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74:5463-5467.
Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucl. Acids Res. 31: 3381-3385.
Scott, M., Groth, D., Foster, D., Torchia, M., Yang, S. L., DeArmond, S. J., and Prusiner, S. B. 1993. Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73:979–988.
Scott-Craig, J. S., Panaccione, D. G., Cervone, F., and Walton, J. D. 1990. Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell. 2:1191-1200.
Shieh, M. T., Brown, R. L., Whitehead, M. P., Cary, J. W., Cotty, P. J., Cleveland, T. E., and Dean, R. A. 1997. Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl. Environ. Microbiol. 63:3548-3552.
Slater-Handshy, T., Droll, D. A., Fan, X., Di Bisceglie, A. M., Chambers, T. J. 2004. HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing. Virology. 319:36-48.
Sola, R. J. and Griebenow, K. 2006. Chemical glycosylation: new insights on the interrelation between protein structural mobility, thermodynamic stability, and catalysis. FEBS Lett. 580:1685-1690.
Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
Staples, R. C. and Mayer, A. M. 1995. Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiol. Lett. 134:1-7.
Stratilová, E., Mislovicova, D., Kacurakova, M., Machova, E., Kolarova, N., Markovic, O., and Jornvall, H. 1998. The glycoprotein character of multiple forms of Aspergillus polygalacturonase. J. Protein Chem. 17:173-179.
Taraboulos, A., Rogers, M., Borchelt, D. R., McKinley, M. P., Scott, M., Serban, D., and Prusiner, S. B. 1990. Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc. Natl. Acad. Sci. U.S.A. 87:8262-8266.
Telling, G. C., Scott, M., Mastriani, J., Gabizon, R., Torchia, M., Cohen, F. E., DeArmond, S. J., and Prusiner, S. B. 1995. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83:79–90.
ten Have, A., Breuil, W. O., Wubben, J. P., Visser, J., van Kan, J. A. 2001. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol. 33:97-105.
ten Have, A., Mulder, W., Visser, J., van Kan, J.A.L. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant Microbe Interact. 11:1009-1016.
Torto, T. A., Rauser, L., and Kamoun, S. 2002. The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Curr. Genet. 40:385-390.
Tyler, B. M. 2001. Genetics and genomics of the oomycete-host interface. Trends Genet. 17:611-614.
van Pouderoyen, G., Snijder, H. J., Benen, J. A., and Dijkstra, B. W. 2003. Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Lett. 554: 462-466.
van Santen, Y., Benen, J. A., Schroter, K. H., Kalk, K. H., Armand, S., Visser, J., and Dijkstra, B. W. 1999. 1.68-A crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J. Biol. Chem. 274:30474-30480.
van Teeffelen, A. M., Broersen, K., and de Jongh, H. H. 2005. Glucosylation of beta-lactoglobulin lowers the heat capacity change of unfolding; a unique way to affect protein thermodynamics. Protein Sci. 14:2187-2194.
Waksman, G., Keon, J. P., and Turner, G. 1991. Purification and characterization of two endopolygalacturonases from Sclerotinia sclerotiorum. Biochim. Biophys. Acta. 1073:43-48.
Walton, J. D. 1994. Deconstructing the cell wall. Plant Physiol. 104:113-118.
Wang, C., Eufemi, M., Turano, C., and Giartosio, A. 1996. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry. 35:7299-7307.
Woosley, B., Xie, M., Wells, L., Orlando, R., Garrison, D., King, D., and Bergmann, C. 2006. Comprehensive glycan analysis of recombinant Aspergillus niger endo-polygalacturonase C. Anal. Biochem. 354:43-53.
Wubben, J. P., Mulder, W., ten Have, A., van Kan, J. A., and Visser, J. 1999. Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl. Environ. Microbiol. 65:1596-1602.
Wubben, J. P., ten Have, A., van Kan, J. A., and Visser, J. 2000. Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Curr. Genet. 37:152-157.
Xie, M., Krooshof, G. H., Benen, J. A., Atwood, J. A. III, King, D., Bergmann, C., and Orlando, R. 2005. Post-translational modifications of recombinant B. cinerea EPG 6. Rapid Commun. Mass Spectrom. 19:3389-3397.
Yan, H. Z. and Liou, R. F. 2005. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 42:339-350.
Yan, H. Z. and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 43:430-438.
Yang, Y., Bergmann, C., Benen, J., and Orlando, R. 1997. Identification of the glycosylation site and glycan structures of recombinant endopolygalacturonase II by mass spectrometry. Rapid Commun. Mass Spectrom. 11:1257-1262.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33024-
dc.description.abstract疫病菌pppg1基因之蛋白產物為一個可表現多聚半乳糖醛酸酶酵素活性之醣蛋白,胺基酸序列分析顯示其具有11個可能之醣基化位置,但對於這些位置是否真有醣基化反應發生及醣基與酵素活性之間的關連性目前仍不清楚。為了解pppg1醣基化反應與其酵素活性之間的相關性,本實驗利用定點突變的方式針對醣基化位置進行一系列單點及多點突變,並以酵母菌(Pichia pastoris)系統表現重組蛋白,以便進行酵素活性及生化特性分析。分析結果顯示,這11個可能之醣基化位置確實都有醣基化反應發生。進一步分析這些突變蛋白的酵素活性,發現每一個醣基化位置都對酵素活性具有重要作用,特別是在N8位置的醣基化反應對酵素活性的影響最大。實驗也發現,N1、N3、N4、N10與N11等位置的醣基化反應對於pppg1重組蛋白在高溫逆境下維持穩定性非常重要。此外,醣基化反應也與pppg1蛋白的分泌有密切關係。另一方面,為探討pppg1蛋白質N端的醣基與蛋白質折疊之間的關係,一個未含醣基化位置之多聚半乳糖醛酸酶(PG3b)基因的N端與PPPG1的N端進行交換以得到重組蛋白PG3b1a,酵素活性分析結果發現,雖然重組蛋白PG3b1a的N端缺乏醣基,卻還是具有很強的酵素活性,顯見pppg1蛋白質原本N端之醣基化反應對於蛋白質結構的完整性很重要。然而,重組蛋白PG3b1a對高溫仍較為敏感,顯示在高溫情況,醣基對於蛋白的保護功能是無法取代的。同時,我也針對多聚半乳糖醛酸酶的保守性胺基酸進行突變分析,實驗結果發現Asp209、 Asp230、Asp231、H252與K290與酵素活性有重要關係。zh_TW
dc.description.abstractThe deduced amino acid sequence of pppg1, which encodes a polygalacturonase in the oomycete plant pathogen Phytophthora parasitica, contains eleven putative N-glycosylation sites. To understand the significance of N-glycosylation on the enzymatic activity of PPPG1, site-directed mutagenesis was employed to generate a serial of single and multiple mutations on the N-glycosylation sites. Recombinant mutant proteins were expressed using a yeast (Pichia pastoris) protein expression system and their biochemical characteristics were analyzed. The results indicated that mutations in the N-glycosylation sites resulted in a significant loss of the endoPG activity compared to that of the wild-type protein, especially mutation at N8, suggesting the importance of N-glycosylation on the structure and thereby the enzymatic function of the PPPG1. Besides, mutation in positions N1, N3, N4, N10, and N11 caused a reduction in thermostability of the recombinant proteins. It is thus suggested that N-glycosylations on these amino acid residues might be involved in preventing the protein from the deleterious effect caused by heat. N-glycosylation is also important for the secretion of PPPG1. Furthermore, it was demonstrated that the replacement of the N-terminus of PPPG1 with that of PG3b, another gene encoding endopolygalacturonase in P. parasitica which contains no N-glycosylation site, resulted in restoration of activity to N1-4 mutated PPPG1, indicating that N-glycosylation in the first four N-glycosylation sites of pppg1 might play a major role in the formation of parallel β-helix. Nevertheless, the chimeric protein exhibited a reduction in thermostability, implicating the essential function of N-glycosylation in increasing the stability of the enzyme against thermal unfolding. In the meanwhile, mutations were generated in six amino acid residues which are highly conserved among endoPGs. Analysis of the biochemical properties of these mutants indicated that residues Asp209, Asp230, Asp231, H252, and K290 play very important roles in pectin hydrolysis.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:22:18Z (GMT). No. of bitstreams: 1
ntu-95-D90633003-1.pdf: 4165102 bytes, checksum: aae5895a52135f23f82ff5431356a1ea (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要------------------------------------------------------------------------------------------1
Abstract--------------------------------------------------------------------------------------------2
Introduction---------------------------------------------------------------------------------------3
Materials and Methods--------------------------------------------------------------------------8
1. Strain of P. parasitica and culture conditions------------------------------------8
2. PCR-based site-directed mutagenesis---------------------------------------------8
3. Protein expression and purification------------------------------------------------9
4. Analysis of endoPG activity------------------------------------------------------10
5. Antibody preparation---------------------------------------------------------------11
6. Western blot-------------------------------------------------------------------------11
7. Structural homology modeling----------------------------------------------------12
Results--------------------------------------------------------------------------------------------13
Part I: Roles of N-linked glycans on pppg1 protein in the endoPG activity------13
a. Glycosylation occurred in all putative N-glycosylation sites of pppg1---------------------------------------------------------------------------13
b. Effects of mutations of putative N-glycosylation sites on the enzymatic activity of pppg1---------------------------------------------------------------14
c. Specific activity and kinetic parameter of the wild type and site directed mutated pppg1 recombinant proteins----------------------------------------15
d. N-glycosylation protects the endoPG activity of PPPG1 from heat treatment------------------------------------------------------------------------16
Part II: Roles of N-linked glycans on pppg1 protein in the endoPG secretion---17
a. The N-glycosylation site is important in the secretion of pppg1 protein--------------------------------------------------------------------------17
Part III: Roles of the first four N-linked glycans on pppg1 protein in stabilizing the structure of PPPG1-------------------------------------------------------18
a. Glycosylation on N1~4 stabilize the 3D structure of pppg1------------18
b. Enzymatic characteristics of PPPG1 and PG3b1a-----------------------19
Part IV: Roles of PG conserved amino acid residues on pppg1 protein in the endoPG activity---------------------------------------------------------------20
a. Conservwd amino acid residues were critical for the endoPG activity of PPPG1----------------------------------------------------------------------20
Discussions--------------------------------------------------------------------------------------21
1. The role of N-glycosylation in substrate binding and action of hydrolysis-21
2. N-glycosylation stabilizes the protein folding----------------------------------23
3. N-glycosylation increases the thermostability of PPPG1---------------------24
References---------------------------------------------------------------------------------------26
Tables---------------------------------------------------------------------------------------------36
Legends------------------------------------------------------------------------------------------39
Appendix I: Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica-----53
Appendix II: Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica------65
dc.language.isoen
dc.title疫病菌多聚半乳糖醛酸酶(pppg1)之分子選殖與功能性分析zh_TW
dc.titleMolecular cloning and functional analysis of pppg1 encoding endo-polygalacturonase in Phytophthora parasiticaen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee袁國芳,蔡世峰,曾顯雄,李永安,沈湯龍,沈偉強
dc.subject.keyword疫病菌,多聚半乳糖醛酸&#37238,zh_TW
dc.subject.keywordPhytophthora parasitica,polygalacturonase,PG,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2006-07-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
4.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved