Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉仁沛
dc.contributor.authorHsin-Pei Luen
dc.contributor.author呂欣蓓zh_TW
dc.date.accessioned2021-06-13T04:21:51Z-
dc.date.available2006-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citation1. Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th ed. Blackwell Science. 2002:304-305.
2. Cornbleet PJ, Gochman N. Incorrect least-squares regression coefficients in method-comparison analysis. Clinical Chemistry 1979;25:432–8.
3. Dobbin K. K., Beer D. G., Meyerson M., Teatman T. J. et al. Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrrays. Clinical Cancer Research. 2005;11:565-572
4. Douglas C. Montgomery, Elizabeth A. Peck. Introduction to linear regression analysis. 1st ed. JOHN WILEY & SONS. 1982:8-16
5. George W. Snedecor, William G. Cochran. Statistical methods. 7th ed. 1982:172.
6. Linnet K. Estimation of the linear relationship between the measurements of two methods with proportional errors. Statistics in Medicine 1990;9:1463–73.
7. Reed BC. Linear least-squares fits with errors in both coordinates. American Journal of Physics 1989;57:642–6.
8. Reed BC. Linear least-squares fits with errors in both coordinates. II. Comments on parameter variances. American Journal of Physics 1992;60:59–62.
9. Robert F. Martin. General Deming Regression for Estimating Systematic Bias and Its Confidence Interval in Method-Comparison Studies. Clinical Chemistry 2000;46:100-104.
10. Williamson JH. Least-squares fitting of a straight line. Canadian Journal of Physics 1968;46:1845–7.
11. Wayne A. Fuller. Measurement error models. JOHN WILEY & SONS. 1987:1-2.
12. York D. Least-squares fitting of a straight line. Canadian Journal of Physics 1966;44:1079–86.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33011-
dc.description.abstract微陣列是二十一世紀中一項突破性進展的技術。但是直到現今,美國食品及藥物管理局 (FDA) 才批准了第一項根據微陣列技術所發展的生物晶片產品。其中一項主要的原因,是由於從不同的實驗室及不同的實驗平台所取得之基因表現量的強度測量值有系統誤差的產生。理想情況下,對相同的基因,在不同實驗室或者在不同的平台之間,所取得的重複強度測量值應該是相同的。因此,在方法比較上,迴歸的方法可以適用於評估系統誤差,特別是在於實驗決策閥值上。然而,從不同的實驗室或者不同的實驗平台之間,所取得重複的強度測量值會有隨機變異。因此,傳統線性迴歸 (Ordinary Linear Regression) 就不適合使用。而簡單戴明迴歸 (Simple Deming Regression)以及遞迴再加權戴明迴歸 (Iteratively Reweighted General Deming Regression) 則適合使用於上述的情況。另一方面,對於不同的基因,表現量資料不是獨立的。根據斜率、截距、系統誤差、以及相對應信賴區間的估算,不同基因之中,強度量測值之間相關的影響,是未知的。在不同截距、斜率、系統誤差、實驗決策閥值、隨機誤差的架構、相關、以及樣本大小的幾種組合之下,我們執行一模擬研究,憑經驗依據參數的誤差以及包含率,來比較傳統線性迴歸、簡單戴明迴歸、以及遞迴再加權戴明迴歸的表現。從已出版的論文得來的數值資料說明應用。zh_TW
dc.description.abstractMicroarray technology is one of the breakthrough technologies in the twenty-first century. But only recently, the US Food and Drug Administration (FDA) approved the first biochip product based on the microarray technology. One of the primary reasons is the systematic bias of intensity measurements on gene expression data obtained from different laboratories and between different array platforms. Ideally the replicated intensity measurements of the same genes obtained from different laboratories or between different platforms should be same. Therefore, regression approaches for method comparison can be applied to assess the systematic bias, especially at the medical decision thresholds. However, replicated intensity measurements from different laboratories or between different platforms are subject to random errors. Consequently, ordinary linear regression (OLR) is not appropriate and simple Deming regression (SDR), and iteratively reweighted general Deming regression (IRGDR) should be used when both measurements contain random error. On the other hand, expression data of different genes are not independent. Impact of correlation of intensity measurements among different genes upon the estimation of slope, intercept, systematic bias, and their corresponding confidence intervals is not known. Under various combinations of intercept, slope, systematic bias, decision points, structures of random errors, correlations, and sample size, we conducted a simulation study to empirically compare performance of OLR, SDR, and IRGDR in estimating bias of the parameters and coverage probability. Numeric data from published papers illustrate the applications.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:21:51Z (GMT). No. of bitstreams: 1
ntu-95-R93621207-1.pdf: 572491 bytes, checksum: 42ddaf08daaeb583ea77aebb04bee569 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
摘要..............................................................................................................................Ⅰ
Abstract ......................................................................................................................Ⅱ
Contents ......................................................................................................................Ⅲ
Chapter 1 Introduction ...............................................................................................1
Chapter 2 Statistical Methods for Evaluation of Systematic Bias...........................3
2.1 Ordinary Linear Regression .............................................................................3
2.1.1 Laboratory without Replicate .....................................................................3
2.1.2 Laboratory with Replicate ….....................................................................4
2.2 Simple Deming Regression ................................................................................5
2.2.1 Laboratory without Replicate .....................................................................5
2.2.2 Laboratory with Replicate …….................................................................7
2.3 Iteratively Reweighted General Deming Regression .........................................7
2.3.1 Laboratory without Replicate .....................................................................8
2.3.2 Laboratory with Replicate .......................................................................10
Chapter 3 Simulation ................................................................................................11
3.1 Independent Case ...........................................................................................12
Table 3.1 Specifications of the values used in the simulation study .......................13
3.1.1 Constant SD ............................................................................................13
3.1.2 Constant CV ...........................................................................................14
3.1.3 Variable SD and CV .................................................................................14
3.2 Dependent Case ..............................................................................................15
3.2.1 Constant SD ............................................................................................17
3.2.2 Constant CV ...........................................................................................17
3.2.3 Variable SD and CV .................................................................................18
Table 3.2 Five sets of covariates ............................................................................19
Chapter 4 Numerical Example .................................................................................20
Table 4 Numerical Example .................................................................................21
Chapter 5 Discussion .................................................................................................21
Table ............................................................................................................................23
Table 3.1.1.1 Independent Case (Constant SD, Variation Level : Low) .................23
Table 3.1.1.2 Independent Case (Constant SD, Variation Level : Middle) .............23
Table 3.1.1.3 Independent Case (Constant SD, Variation Level : High) ................23
Table 3.1.2.1 Independent Case (Constant CV, Variation Level : Low) .................24
Table 3.1.2.2 Independent Case (Constant CV, Variation Level : Middle) .............24
Table 3.1.2.3 Independent Case (Constant CV, Variation Level : High) ................24
Table 3.1.3.1 Independent Case (Variable SD and CV, Variation Level : Low) .....25
Table 3.1.3.2 Independent Case (Variable SD and CV, Variation Level : Middle) .25
Table 3.1.3.3 Independent Case (Variable SD and CV, Variation Level : High) .....25
Table 3.2.1.1 Dependent Case (Constant SD, Variation Level : Low) ....................26
Table 3.2.1.2 Dependent Case (Constant SD, Variation Level : Middle) ................26
Table 3.2.1.3 Dependent Case (Constant SD, Variation Level : High) ...................26
Table 3.2.2.1 Dependent Case (Constant CV, Variation Level : Low) ....................27
Table 3.2.2.2 Dependent Case (Constant CV, Variation Level : Middle) ...............27
Table 3.2.2.3 Dependent Case (Constant CV, Variation Level : High) ...................27
Table 3.2.3.1 Dependent Case (Variable SD and CV, Variation Level : Low) ........28
Table 3.2.3.2 Dependent Case (Variable SD and CV, Variation Level : Middle) ....28
Table 3.2.3.3 Dependent Case (Variable SD and CV, Variation Level : High) .......28
Reference ....................................................................................................................29
Appendix A .................................................................................................................30
Appendix B (FORTRAN Program—Independent Case / Constant SD) ..............................33
Appendix C (FORTRAN Program—Independent Case / Constant CV) .............................58
Appendix D (FORTRAN Program—Independent Case / Variable SD and CV)....................86
Appendix E (FORTRAN Program—Dependent Case / Constant SD)................................117
Appendix F (FORTRAN Program—Dependent Case / Constant CV)...............................143
Appendix G (FORTRAN Program—Dependent Case / Variable SD and CV)....................171
dc.language.isoen
dc.title微陣列實驗中評估基因表現量資料系統誤差
統計方法之模擬研究
zh_TW
dc.titleA Simulation Study of Statistical Methods for Evaluation of Systematic Bias in Gene Expression Data from Microarray Experimentsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈明來,劉力瑜
dc.subject.keyword方法比較,系統誤差,實驗決策閥值,量測誤差,戴明迴歸,相關,zh_TW
dc.subject.keywordMethod comparison,Systematic bias,Medical decision threshold,Measurement errors,Deming regression,Correlation,en
dc.relation.page205
dc.rights.note有償授權
dc.date.accepted2006-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
559.07 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved