請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32985完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高景輝(Ching-Huei Kao) | |
| dc.contributor.author | Yi-Chu Chang | en |
| dc.contributor.author | 張毅竹 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:21:01Z | - |
| dc.date.available | 2011-08-03 | |
| dc.date.copyright | 2011-08-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-27 | |
| dc.identifier.citation | 參考文獻
戶刈義次 (1963) 作物學試驗法. 東京農業技術學會印行 卓仕珏 (2010) 鈣與水稻鎘逆境關係之研究. 國立台灣大學農藝學系碩士論文. 台北. 周庭邵 (2009) 水稻幼苗鎘逆境生理之研究:鎂或熱休克之效應. 國立台灣大學農藝學系碩士論文. 台北. 林雅琳 (2008) 水稻幼苗鎘逆境生理之研究:氮與熱休克之效應. 國立台灣大學農藝學系碩士論文. 台北. 郭俊伶 (2008) 水稻幼苗鎘逆境生理之研究:硫與熱休克之效應. 國立台灣大學農藝學系碩士論文. 台北. 劉純馨 (2010) 鉀與水稻鎘逆境關係之研究. 國立台灣大學農藝學系碩士論文. 台北. 張尊國 (2002) 台灣地區土壤汙染現況與整治政策分析. 中華永續農業協會. http://old.npf.org.tw/PUBLICATION/SD/091/SD-B-091-021.htm Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399 Asagba SO, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of cadmium and its biochemical effect onselected tissues of the catfish (Clarias gariepinus) . Fish Physiology and Biochemistry 34: 61-69 Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou J, Pugin A, Wendehenne D (2009) Nitric Oxide Contributes to Cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiology 149: 1302-1315 Bienfait HF, Bino RJ, van der Bliek AM, Duivenvoorden JF, Fontain JM (1983) Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiologia Plantarum 59: 196-202 Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254 Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiology and Biochemistry 48: 374-381 Chao YY, Hsu YT, Kao CH (2009) Involvement of glutathione in heat shock- and hydrogen peroxide-induced cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant and Soil 318: 37-45 Chauhan S, Titus DE, O'brian MR (1997) Metals control activity and expression of the heme biosynthesis enzymed-aminolevulinic acid dehydratase in Bradyrhizobium japonicum. Journal of Bacteriology 179: (17) 5516-5520 Chen SL, Kao CH (1995a) Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regulation 17: 67-71 Chen SL, Kao CH (1995b) Glutathione reduces the inhibition of rice seedling root growth caused by cadmium. Plant Growth Regulation 16: 249-252 Chen SL, Kao CH (1995c) Prior temperature exposure affects subsequent Cd-induced ethylene production in rice leaves. Plant Science 104: 135-138 Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis thaliana. Plant Physiology 53: 784-788 Chien HF, Kao CH (2000) Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science 156: 111-115 Chien HF, Lin CC , Wang J-W , Chen CT, Kao CH (2002) Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regulation 36: 41-47 Chien HF, Lin CC, Wang J-W, Chen CT, Kao CH (2001) Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regulation 33: 205-213 Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Journal of Plant Physiology 168: 1021-1030 Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Journal of Plant Physiology 168: 1021-1030 Chugh LK, Gupta VK, Sawhney SK (1992) Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochemistry 31: 395-400 Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. International Journal of Occupational Medicine and Environmental Health 14: 235-239 Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology 116: 1063-1072 Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell 16: 3400-3412 Connolly EL, Guerinot ML (2002) Iron stress in plants Genome Biology 3: 1024.1-1024.4 Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008) Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. Journal of Experimental Botany 59: 155-163 Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al: Plant nitric oxide synthase: back to square one. Trends in Plant Science 11: 526-527 Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environmental Pollution 98: 29-36 del Río LA, Corpas FJ, Sandalio LM, Palma JM, Manuel Gómez, Barroso JB (2003) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53: 1255-1272 del Riõ LA, Sandalio LM, Altomare DA , Zilinskas BA (2002) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. Journal of Experimental Botany 54: 923-933 Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588 Ding F, Wang XF, Shi QH, Wang ML, Yang FJ, Gao QH (2008) Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient Chinese cabbage (Brassica chinensis L.). Agricultural Sciences in China 7: 168-179 Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences USA 93: 5624-5628 Fang WC, Wang JW, Lin CC, Kao CH (2001) Iron induction of lipid peroxidation and effects on antioxidative enzyme activities in rice leaves. Plant Growth Regulation 35: 75-80 Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology 66: 482-487 Fuhrer F (1982) Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans (Phaseolus vulgaris L.). Plant Physiology 70: 162-167 García-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology 128: 790-792 García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. Journal of Experimental Botany 61: 3885-3899 García MJ, Suárez V , Romera FJ, Alcántara E, Pérez-Vicente R (2011) A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiology and Biochemistry 49: 537-544 Garty, J, Karay, Y, Harel J (1992) Effect of low pH, heavy metals and anions an chloropyhyll degradation in the lichen Ramalina duriaei (de not) Bagl. Environmental and Experimental Botany 32: 229-241 Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. American Society of Plant Biologists 130: 1852-1859 Graziano M, Lamattina L (2005) Nitric oxide and iron in plants: an emerging and converging story. TRENDS in Plant Science 10: 4-8 Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant Journal 52: 949-960 Guo FQ, Okamoto M, Crawford NM (2003a) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302: 100-103 Haber F and Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron. Proceedings of the Royal Society of London 147: 332-351 Haghiri F (1973) Cadmium uptake by plants. Journal of Environmental Quality 2: 93-96 Heath R, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 180-198 Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes,novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology 119: 471-479 Higuchi K, Watanabe S, Takahashi M, KawASCki S, Nakanishi H, Nishizawa NK, Mori S (2001a) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. The Plant Journal 25: 159-167 Hou, SM, Kao CH (1993) Characteristics of the induction of the ethylene by cadmium in detached rice leaves. Botanical Bulletin of Academia Sinica 34: 163-168 Hsu YT, Kao CH (2003a) Accumulation of ammonium ion in cadmium tolerant and sensitive cultivars of Oryza sativa. Plant Growth Regulation 39: 271-276 Hsu YT, Kao CH (2003b) Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regulation 40: 147-155 Hsu YT, Kao CH (2003c) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell and Environment 26: 867-874 Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 42: 227–238 Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 42: 227-238 Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 42: 227-238 Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiologia Plantarum 124: 71-80 Hsu YT, Kao CH (2007a) Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plan and Soil 291: 27-37 Hsu YT, Kao CH (2007b) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant and Soil 298: 231-241 Hsu YT, Kao CH (2007c) Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant and Soil 300: 137-147 Hsu YT, Kao CH (2008) Distinct roles of abscisic acid in rice seedlings during cadmium stress at high temperature. Botanical Studies 49: 335-342 Hsu YT, Kuo MC, Kao CH (2006) Cadmium-induced ammonium ion accumulation of rice seedlings at high temperature is mediated through abscisic acid. Plant and Soil 287: 267-277 Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. The Plant Journal 36: 366-381 Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron (III) -deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. The Journal of Biological Chemistry 284: 3470-3479 Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Molecular Biology 66: 193-203 Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+ The Plant Journal 45: 335-346 Jana S, Choudhuri MA (1981) Glycolate metabolism of three submersed aquatic angiosperms: Effect of heavy metals. Aquatic Botany 11: 67-77 Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65: 729-735 Kerkeb L, Mukherjee I, Chatterjee I, Lahner B, Salt DE, Connolly EL (2008) Iron-induced turnover of the Arabidopsis iron-regulated transporter1 metal transporter requires lysine residues. Plant Physiology 146: 1964–1973 Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-coordinately induced by partially conserved iron-deficiency-responsive elements. Journal of Experimental Botany 56: 1305-1316 Kong WW, Zhang LP, Kai Guo K, Liu ZP, Yang ZM (2010) Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotechnology Journal 8: 88-99 Kuo MC, Kao CH (2004) Antioxidative enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedlings. Botanical Bulletin of Academia Sinica 45: 291-299 Kuo MC, Kao CH (2004) Antioxidative enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedlings. Botanical Bulletin of Academia Sinica 45: 291-299 Larsom RA (1988) The antioxidants of higher plants. Phytochemistry 27: 969-978 Lauriere C, Daussant J (1983) Identification of tlte ammonium-dependent isoenzyme of glutamate dehydrogenase as the form induced by senescence or darkness in the 1st leaf of wheat. Physiologia Plantarum 58: 89-92 Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochemical Journal 210: 899-903 Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric-oxide free radical in vegetative stress and senescence of Pisum sativum Linn foliage. Journal of Plant Physiology 148: 258-263 Li L, Cheng X, Ling HQ (2004) Isolation and characterization of Fe (III)-chelate reductase gene LeFRO1 in tomato. Plant Molecular Biology 54: 125-136 Lin YL, Chao YY, Huang WD, Kao CH (2011) Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice. Plant Growth Regulation 64: 263-273 Lindsay WL, Schwab AP (1982) The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition 5: 821-840 Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron- uptake responses in roots. Proceedings of the National Academy of Sciences USA 99: 13938-13943 Marschner H, Römheld V (1995) Strategy of plants for acquisition of iron. In: Abadia J (ed) Iron Nutrition in soils and plants. Kluwer Academic Publishers, The Netherlands: 375-388 Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126: 1196-1204 Mori S(1999) Iron acquisition by plants. Current Opinion in Plants Biology 2: 250-253 Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. The EMBO Journal 21: 709-672 Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)-phytosiderophore in barley roots. The Plant Journal 46: 563–572 Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition 52: 464-469 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology 22: 867-880 Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, SASCki T, Kikuchi S, Mori S, Nishizawa NK (2002a) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. The Plant Journal 30: 83-94 Negishi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2002b) Cloning of the genes for deoxymugineic acid synthase, the enzyme in the MAs biosynthetic pathway. Plant & Cell Physiology 43: s164. Nenova V, Stoyanov, I (1999) Physiological and biochemical changes in young maize plants under iron deficiency. 3. Concentration and distribution of some nutrient elements. Journal of Plant Nutrition 22: 565-578 Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49: 249-279 Oaks A, Stulen I, Jones K, Winspear MJ, Misra S, Boesel IL (1980) Enzymes of Nitrogen Assimilation in Maize Roots. Planta 148: 477-484 Olmos E, Martínez-Solano JR, Piqueras A, Hellin E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). Journal of Experimental Botany 54: 291-301 Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America 96: 6553-6557 Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Annals of the New York Academy of Sciences 1012: 1-13 Pantopoulos K, Weiss G, Hentze MW (1996) Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Molecular and Cellular Biology 16: 3781-3788 Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry 154: 536-541 Pedroso MC, Durzan DJ (2000) Effect of different gravity environments of DNA fragmentation and cell death in Kalanchöe leaves. Annals of Botany 86: 983-994 Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. The Science of the Total Environment 326: 239-247 Robinson N, Procter C, Connolly EL, Guerinot M (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397: 694-697 Rodríguez-Serrano M, Romero-Puertas MC, Pazminño DM, Testillano PS, Risueño MC, del Río AL, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology 150: 229-243 Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cd-induced subcellular accumulation of O2˖- and H2O2 in pea leaves. Plant, Cell and Environment 27: 1122-1134 Schaaf G, Schikora A, Häberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wirén N (2005) A putative function for the Arabidopsis Fe-photosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant and Cell Physiology 46: 762-774 Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends in Plant Science. 8: 188-193 Shao G, Chen M, Wang W, Mou R, Zhang G (2007) Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regulation 53: 33-42 Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz KJ (2004) Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science 166: 1287-1295 Shi SY, Wang G, Wang YD, Zhang LG, Zhang LX (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide: Biology and Chemistry 13: 1-9 Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53: 1305-1319 Smith IK (1985) Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiology 79: 1044-1047 Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiology 121: 947-956 Takizawa R, Nishizawa NK, Nakanishi H, Mori S (1996) Effect of iron deficiency on S-adenosylmethionine synthetase in barley roots. Journal of Plant Nutrition 19: 1189-1200 Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more Free Radical. Biology and Medicine 43: 4-15 Venkat Raju K, Marschner H (1972) Regulation of iron uptake from relatively insoluble iron compounds by sunflower plants. Z Pflanzenernaehr Bodenkd 132: 177-190 Walker EL and Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Current Opinion in Plant Biology 11: 530-535 Watts RN, Richardson DR (2004) Differential effects on cellular iron metabolism of the physiologically relevant diatomic effector molecules, NO and CO, that bind iron. Biochimica et Biophysica Acta 1692: 1-15 Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39: 971-974 Wintermans JFGM, de Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta 109: 448-453 Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant and Cell Physiology 46: 1505-1514. Wu J, Wang C, Zheng L, Wang L, Chen Y, Whelan J, Shou H (2011) Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. Journal of Experimental Botany 62: 667-674 Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230: 599-610 Xu J, Yin HX, Liu XJ, Yuan T, Mi Q, Yang LL, Xie ZX, Wang WY (2009) Nitric oxide alleviates Fe de fi ciency-induced stress in Solanum nigrum. Biologia Plantarum 53: 784-788 YamASCki H; Sakihama Y; Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends in Plant Science 4: 128-129 Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Reports 25: 365-373 Zhang F, Wang YP, Yang YL, Wu H, Wang D, Liu JQ (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant, Cell and Environment 30: 775-785 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32985 | - |
| dc.description.abstract | 中文摘要
本論文係以水稻品種台中在來一號 (Oryza sativa L. cv. Taichung Native 1, TN1) 作為試驗材料,探討 (一) 缺鐵水稻誘導鎘吸收之影響與 (二) 水稻幼苗鎘毒害是否由於鐵含量降低所導致。 缺鐵之水稻幼苗,誘導根形成NO與OsIRT1表現,以及增加根部鎘含量。NO清除劑cPTIO,能降低缺鐵所引起NO之形成、OsIRT1表現與鎘濃度。NOS抑制劑L-NAME有效降低缺鐵水稻幼苗生成NO,以及降低OsIRT1表現與鎘累積,NR抑制劑則無此效應,而外加處理NO提供者SNP,能夠增加缺鐵根部所引起NO形成。這些結果說明,缺鐵水稻幼苗根藉由NOS途徑誘導NO生成,透過OsIRT1基因表現,促進根部鎘累積現象。 水稻幼苗處理5 µM CdCl2能降低地上部與根部鐵含量,同時促進根OsIRT1表現,顯示鎘處理會導致缺鐵狀態。本論文以生物量降低、葉黃化、葉綠素含量降低、氧化逆境之誘導以及銨離子累積作為鎘毒害之指標。根據這些指標,試驗結果顯示外加處理10 µM Fe-citrate有效減緩鎘所引起之毒害。此外,外加處理10 µM Fe-citrate明顯降低水稻幼苗地上部與根部之鎘含量。這些結果證明鎘造成水稻幼苗毒害之原因可能是由於缺鐵所造成。 | zh_TW |
| dc.description.abstract | Abstract
In this thesis, rice (Oryza sativa L. cv. Taichung Native 1, TN1) seedlings were used to investigate (a) the effect of iron deficiency on cadmium (Cd) uptake and (b) whether Cd toxicity was resulted from reduction of iron concentration. Iron deficiency resulted in increasing NO production, OsIRT1 expression, and Cd concentration in rice roots. Iron deficiency induced NO production, OsIRT1 expression and Cd accumulation could be blocked by NO scavenger cPTIO, NOS inhibitor L-NAME, but not NR inhibitor Tu. Collective, our results suggested that iron deficiency induced Cd accumulation and OsIRT1 expression are mediated through NOS-catalyzed NO production in rice roots. Application of 5 µM CdCl2 to rice seedlings resulted in decreasing iron concentration in shoots and roots, and induced OsIRT1 expression. These results suggested that Cd-treated rice seedlings were in iron starved status. In this thesis, Cd toxicity was judged by the decrease in biomass production, chlorosis, drcrease in chlorophyll content, induction of oxidative stress, and accumulation of ammonia ion. On the basis of these confidences, we demonstrated that application of 10 µM Fe-citrate reduced toxicity of rice seedlings caused by 5 µM CdCl2. Moreover, we also observed Fe-citrate application decreased Cd concentration in shoots and roots. According to our results, the decrease in iron concentration in rice seedlings may contribute to the toxicity caused by CdCl2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:21:01Z (GMT). No. of bitstreams: 1 ntu-100-R98621102-1.pdf: 3168688 bytes, checksum: 5dd820d7053b37ad55c94ad0d3d4f5c2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
誌 謝…………………………………………………………………………………………..….i 中 文 摘 要………………………………………………………...………………………….…....ii 英 文 摘 要………………………………………………………………………………….……..iii 目 錄………………………………………………………………………………………………....v 表 目 錄………………………………………………………….……….………………………...vi 圖 目 錄…………………………………………………………………………………...…….…vii 縮 寫 字 對 照………………………………………………………………………………….…ix 前 言……………………………………………………………………………………………..1 前 人 研 究………………………………………………………………………………………....3 一、 氧化逆境與活化氧族……………………………………………….........................3 二、 植物抗氧化系統…………………………………………………………………….3 三、 鐵與植物生長……………………………………………………………………….5 四、 缺鐵與獲鐵基因之表達…………………………………….....................................7 五、 一氧化氮……………………………………………………….................................8 六、 鎘毒害……………………………………………………………………………….9 七、 鎘與植物生長……………………………………………………...………………..9 八、 鎘與鐵之關係……………………………………………………………………...10 九、 本實驗室過去文獻探討…………………………………………………………...11 十、 本論文研究方向…………………………………………………………………...12 材料與方法………………………………………………………………………………………...13 一、 材料種植與處理…………………………………………………………………...14 二、 水耕液之配置……………………………………………………………………...14 三、 化學成分分析……………………………………………………………………...15 四、 酵素活性分析……………………………………………………………………...22 五、 基因表現之檢測…………………………………………………………………...25 六、 統計分析…………………………………………………………………………...27 結果………………………………………………………………………………………………...28 一、 缺鐵水稻幼苗對鎘吸收之影響…………………………………………………...28 二、 鐵與水稻幼苗鎘逆境之關係……………………………………………………...44 討論………………………………………………………………………………………………...53 未來研究方向……………………………………………………………………………………...56 參考文獻…………………………………………………………………………………………...57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 一氧化氮 | zh_TW |
| dc.subject | 鎘 | zh_TW |
| dc.subject | 缺鐵 | zh_TW |
| dc.subject | OsIRT1 | zh_TW |
| dc.subject | 水稻幼苗 | zh_TW |
| dc.subject | iron deficiency | en |
| dc.subject | rice seedlings | en |
| dc.subject | OsIRT1 | en |
| dc.subject | nitric oxide | en |
| dc.subject | cadmium | en |
| dc.title | 鐵與水稻幼苗鎘逆境關係之研究 | zh_TW |
| dc.title | Studies on the Relationship between Iron and Cadmium Stress of Rice Seedlings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳宗禮(Tsung-Li Chen),王恆隆(Heng-Long Wang),洪傳揚(Chwan-Yang Hong),許奕婷(Yi-Ting Hsu) | |
| dc.subject.keyword | 鎘,缺鐵,一氧化氮,OsIRT1,水稻幼苗, | zh_TW |
| dc.subject.keyword | cadmium,iron deficiency,nitric oxide,OsIRT1,rice seedlings, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
