Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋家驥(Chia-Chi Sung)
dc.contributor.authorChen-Che Tsaien
dc.contributor.author蔡政哲zh_TW
dc.date.accessioned2021-06-13T04:19:02Z-
dc.date.available2021-07-27
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citation1. E. Yablonovitch, (1987) 'Inhibited spontaneous emission in solid-state physics and electronics,' Phys. Rev. Lett. 58, 2059-2062
2. S. John, (1987) 'Strong localization of photons in certain disordered dielectric superlattices, ' Phys. Rev. Lett. 58, 2486-2489
3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, (1990) 'Existence of a photonic gap in periodic dielectric structures, ' Phys. Rev. Lett. 65, 3152-3155
4. Pierre R. Villeneuve and Michael Piche, (1992) 'Photonic band gaps in two-dimensional square lattices: Square and circular rods,' Phys. Rev. B. 46, 4973-4975
5. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, (1991) 'Photonic band structure: The face-centered-cubic case employing nonspherical atoms, ' Phys. Rev. Lett. 67,2295-2298
6. E. Yablonovitch, T. J. Gmitter, and R. Bhat, (1988) 'Inhibited and enhanced spontaneous emission from optically thin AlAs/GaAs double heterostructures, ' Phys. Rev. Lett. 61,2546-2549
7. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, (1992) 'Measurement of photonic band structure in a two-dimensional periodical dielectric array, ' Phys. Rev. Lett. 68, 2023-2026
8. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, (1993) 'Acoustic Band Structure of Periodic Elastic Composites,' Phys. Rev. Lett.71(13),2022-2025
9. S. Tamura, D. C. Hurley, and J. P. Wolfe (1998) 'Acoustic-phonon propagation in superlattices,' Phys. Rev. Rev. B 38(2), 1427-1449
10. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, (1994) 'Theory of acoustic band structure of periodic elastic composites, ' Phys. Rev. Rev. B 49(4),2313-2322
11. Yukihiro Tanaka and Shin-ichiro Tamura, (1998) 'Surface acoustic waves in two-dumensional periodic elastic structures,' Phys. Rev. Rev. B 58(12),7958-7965
12. Yukihiro Tanaka and Shin-ichiro Tamura, (1999) 'Acoustic stop band of surface and bulk models in two-dimensional phononic lattices consisting of aluminum and a polymer, ' Phys. Rev. Rev. B. 60(19),13294-13297
13. Yukihiro Tanaka and Shin-ichiro Tamura, (2000) 'Band structure of acoustic wave in phononic lattices, ' Phys. Rev. Rev. B.62(11),7387-7392
14. F. R. Montero de Espinosa, E. Jimenez, and M. Torres, (1998) 'Ultrasonic Band Gap in a Periodic Two-dimensional Composites, ' Phys. Rev. Lett.80(6),1208-1211
15. R. E. Vines, J. P. Wolfe, and A. V. Every, (1999) 'Scanning phononic lattices with ultrasonic, ' Phys. Rev. B.60(17),11871-11874
16. R. E. Vines, J. P. Wolfe,(1999) 'Scanning phononic lattices with surface acoustic wave, ' Physica B 263-264,567-570
17. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B.Djafari-Rouhani, ‘Acoustic band structure of periodic elastic composites’, Phys. Rev. Lett. Vol. 71, No. 13, 2022 (1993)
18 M. S. Kushwaha, P. Halevi, ‘Band-gap engineering in periodic elastic composites’,
Appl. Phys. Lett. Vol. 64, No.9, 1805 (1994)
19 M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B.Djafari-Rouhani,
‘Theory of acoustic band structure of periodic elastic composites’, Phys. Rev. B. Vol.
49, No. 4, 2313 (1994)
20 M. S. Kushwaha, ‘Classical band structure of periodic elastic composites’, Internationa1 Journal of Modern Physics B Vol. 10, No. 9, 977 (1996)
21 M. S. Kushwaha, P. Halevi, ‘Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders’, Appl. Phys. Lett. Vol.69, No. 1, 31 (1996)
22 M. S. Kushwaha, ‘Stop-bands for periodic metallic rods: Sculptures that can filter the noise’, Appl. Phys. Lett. Vol. 70, No. 24, 3218 (1997)
23 M. S. Kushwaha, and B. Djafrari-Rouhani, ‘Giant sonic stop band in two-dimensional periodic system of fluids’,Journal of Applied Physics Lett Vol. 84, No. 9, 4677 (1998)
24 J. O. Vasseur, P. A. Deymier, A. Khelif, B. Djafrari-Rouhani, A. Akjouj, L.
Dobrzynski, N. Fettouhi, and J. Zemmouri, ‘Phononic crystal with low filling fraction
and absolute acoustic band gap in the audible frequency range: A theoretical and
experimental study’, Phys. Rev. E Vol. 65, No. 5, 056608 (2002)
25 A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski,
‘Two-dimensional phononic crystal with tunable narrow pass band: Application to a
waveguide with selective frequency’, J. Appl. Phys. Vol. 94, No.3, 1308 (2003)
26 Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, ‘Tunable filtering and demultiplexing in phononic crystals with hollow cylinders’, Phys. Rev. E. Vol. 69, No.4, 046608 (2004)
27. COMSOL Multiphysics User’sGuide and Modeling Guide
28 J. N. Reddy, An introduction to the finite element method 3rd ed. McGraw-Hill, New York (2006)
29. M. Ruzzene and A. Baz, ‘Control of wave propagation in periodic composite rods
using shape memory inserts’, Journal of Vibration and Acoustics Vol. 122, No. 2, 151
(2000).
30. M. Ruzzene and A. Baz, ‘Attenuation and localization of wave propagation in
periodic rods using shape memory inserts’, Smart Materials and Structures Vol. 9, No.6 , 805 (2000).
31. M. Kafesaki, and E. N. Economou, ‘Multiple-scattering theory for three-dimensional periodic acoustic composites’, Phys. Rev. B Vol. 60, No. 17, 11993(1999)
32. L. Y. Wu, (2007) 'The Foci and Dispersions of Negative Refraction Sonic Crystals with Circular and Elliptic Rods.' Master dissertation. Tainan: Cheng Kung University, Taiwan.
33. J. B. Pendry, ‘Negative Refraction Makes a Perfect Lens’, Phys Rev. Lett. Vol. 85, No.18, 3966 (2000)
34. X. Zhang, and Z. Liu, ‘Negative refraction of acoustic waves in two-dimensional
phononic crystals’, Appl. Phys. Lett. Vol. 85, No. 2, 341 (2004)
35. D.N. Chigrin, S. Enoch, C.M. Sotomayor Torres, and G. Tayeb, Opt. Express 11, 1203 (2003)
36. Zhi-Yuan Li and Lan-Lan Lin Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
37. Chunyin Qiu, Zhengyou Liu, Jing Shi, and C. T. Chan, Appl. Phys. Lett. 86, 224105 (2005)
38. S. C. Lin, (2001) ' Ultrasonic Band gap of 2-D phononic crystal ' Master dissertation. Taipei: Taiwan University, Taiwan.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32918-
dc.description.abstract近年來,於聲子晶體領域之研究發現了重要的特殊形式物理特性。有別於在早期聲子晶體的研究與探討主要集中於能隙的應用與計算,如濾波器、波導或共振腔的設計,根據近期文獻研究發現在其傳導區擁有異常之頻散現象,發現聲子晶體具有負折射特性,使得該方面之研究更成為最近學術界的熱門話題。
本文旨在研究利用此異常頻散現象以及調整幾何形狀排列的改變應用於定向聲源、減噪模組等討論,並以有限元素法( Finite Elementary Method )模擬其波傳結果。
在定向聲源的工作中,為了使點波源自我準則現象更明顯,我們改變了二維聲子晶體排列方式以及選擇其中較佳的結果和文獻中利用共振腔定向聲源方式作比較,使其便於實作上架置於並且達到更好的效果;減噪模組方面我們將三組填充率、填充物半徑、晶格常數皆不同的聲子晶體作組合,由於此三組聲子晶體各自的濾波頻段不同,將其疊合在一起以達到寬頻段濾波的效果,將人耳可聽到的頻段能量過濾掉。有別於以往設計聲子晶體來產生窄頻濾波效果,這種擁有寬頻濾波效果的多層聲子晶體可應需求不同應用於傳統研究領域外的地方。
本論文將藉由可調式二維聲子晶體改變其原始規則形態探討週期性結構所衍伸出的多種特殊物理現象發展適用的二維聲子晶體波傳理論。
這些二維聲子晶體波傳理論進可發展至三維聲子晶體以及應用在未來的生醫領域與機械領域上。
zh_TW
dc.description.abstractMany dispersion characteristics of phononic crystal are investigated. Such as negative refraction have become hot topics of scientific research in recent years.
The arrayed arrangement tunable dispersion characteristics of phononic crystals are observed. By controlling the arrayed arrangement, we can tune the refractive direction and adjust the location of focus and then the tunable acoustic superlens can be designed.
There has been much research into the collimation of light source beams by photonic crystals. However, this effect has seldom been achieved using phononic crystals (PCs). On the other hand, it has been shown that acoustic waves may be collimated by resonant cavities in 2D PCs to obtain high directivity. We focuses on the collimation of an acoustic point source by negative refraction in 2D PCs. The advantages of this method are: experiment apparatus is uncomplicated; the divergence angle is only about 5° in the far region; and it has low attenuation when propagating energy.
And we also combine three different form 2D PCs become a multilayered PCs to obtain wide frequency bandwidth(20Hz~20kHz) effect. In this method, we can reduce noise which people can hear.
It is anticipated that this collimating beam method and multilayered PCs may be applied in 2D and 3D acoustic assembled devices or in ultrasonic and sonar detection devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:19:02Z (GMT). No. of bitstreams: 1
ntu-100-R98525028-1.pdf: 3592674 bytes, checksum: c9fe15bb4fefd5d0754f3458ad48449c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要..............................................................................................................................Ⅰ
Abstract........................................................................................................................Ⅱ
目錄..............................................................................................................................Ⅲ
表目錄..........................................................................................................................Ⅴ
圖目錄..........................................................................................................................Ⅵ
符號..............................................................................................................................Ⅷ
第一章 緒論................................................................................................................1
1-1研究動機..............................................................................................................1
1-2文獻回顧..............................................................................................................2
1-3本文內容架構......................................................................................................4
第二章 數值方法......................................................................................................10
2-1 前言...................................................................................................................10
2-2 布拉菲晶格空間...............................................................................................10
2-3 晶體繞射...........................................................................................................11
2-4 倒晶格...............................................................................................................13
2-5 布里淵區...........................................................................................................14
2-6 布洛克定理.......................................................................................................15
2-7 平面波展開法...................................................................................................16
2-8 有限元素法.......................................................................................................20
2-8-1 聲學模組之有限元素法推導.......................................................................20
2-8-2 邊界條件.......................................................................................................23
2-8-3 結構模組與聲學模組之耦合.......................................................................24
第三章 二維聲子晶體的負折射現象......................................................................33
3-1 前言...................................................................................................................33
3-2 聲子晶體之負折射現象分析與模擬...............................................................33
3-2-1 改變入射角度...............................................................................................34
3-3 二維聲子晶體聚焦現象..................................................................................36
第四章 利用二維聲子晶體定向聲源......................................................................46
4-1 前言...................................................................................................................46
4-2 利用共振腔方法定向聲源...............................................................................46
4-3 利用負折射原理定向聲源...............................................................................48
4-3-1 理論公式推導...............................................................................................49
4-3-2 三角晶格排列之聲子晶體不同入射頻率的聲壓強度等位圖...................50
4-3-3 正方晶格排列之聲子晶體不同入射頻率的聲壓強度等位圖...................51
4-3-4 利用負折射定向聲源不同排列方式的比較...............................................52
4-3-5 共振腔定向聲源法以及直接利用負折射定向聲源法之比較...................52
4-4 結論 .................................................................................................................53
第五章 利用多層二維聲子晶體設計出寬頻頻溝區段..........................................68
5-1 前言...................................................................................................................68
5-2 多層二維聲子晶體...........................................................................................68
5-3 寬頻段中以不同頻率入射於多層聲子晶體聲壓強度等位圖.......................69
5-4 模擬結果討論...................................................................................................70
第六章 結論與未來展望............................................................................................78
6-1 結論...................................................................................................................78
6-2 未來展望...........................................................................................................79
參考文獻......................................................................................................................80
dc.language.isozh-TW
dc.title可調式二維聲子晶體波傳現象zh_TW
dc.titleAcoustic wave propagation of tunable two-dimensional
phononic crystal
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃維信,羅如燕,黃智勇
dc.subject.keyword聲子晶體,填充率,定向聲源,負折射,共振腔,頻溝,zh_TW
dc.subject.keywordphononic crystal,filling ratio,collimating acoustic wave beam,negative refraction,resonant cavity,band gap,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved