請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32911完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡孟君(Meng-Chun Hu) | |
| dc.contributor.author | Hsu-Shui Wu | en |
| dc.contributor.author | 吳曙序 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:18:50Z | - |
| dc.date.available | 2007-08-03 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | Arensburg J, Payne AH, Orly J. 1999. Expression of steroidogenic genes in maternal and extraembryonic cells during early pregnancy in mice. Endocrinology 140:5220-5232.
Bakke M, Lund J. 1995. Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3',5'-monophosphate-responsive sequence in the bovine CYP17 gene. Mol Endocrinol 9:327-339. Bell AC, West AG, Felsenfeld G. 2001. Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science 291:447-450. Carreau S, Lambard S, Delalande C, Denis-Galeraud I, Bilinska B, Bourguiba S. 2003. Aromatase expression and role of estrogens in male gonad: a review. Reprod Biol Endocrinol 1:35. Chou SJ, Lai KN, Chung B. 1996. Characterization of the upstream sequence of the human CYP11A1 gene for cell type-specific expression. J Biol Chem 271:22125-22129. Chung BC, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. 1986. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci U S A 83:8962-8966. Chung JH, Whiteley M, Felsenfeld G. 1993. A 5' element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74:505-514. Endo H, Okanoya K, Park TJ, Sasaki M, Tanemura K, Kimura J, Hayashi Y. 2002. Localization of the cytochrome p450 side-chain cleavage enzyme in the inactive testis of the naked mole-rat. Zoolog Sci 19:673-678. Engel SR, Grant KA. 2001. Neurosteroids and behavior. Int Rev Neurobiol 46:321-348. Ganong WF. 1995. Review of Medical Physiology, chapter 20 &23: Appleton & Lange. Garrick D, Fiering S, Martin DI, Whitelaw E. 1998. Repeat-induced gene silencing in mammals. Nat Genet 18:56-59. Geyer PK, Corces VG. 1992. DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes Dev 6:1865-1873. Gunasegaram R, Peh KL, Loganath A, Chew PC, Ratnam SS, Arulkumaran S. 1998. Cytochrome P-450 cholesterol side-chain cleavage expression in human spermatozoa. Horm Metab Res 30:58-60. Hsu HJ, Hsu NC, Hu MC, Chung BC. 2006. Steroidogenesis in zebrafish and mouse models. Mol Cell Endocrinol 248:160-163. Hu MC, Chou SJ, Huang YY, Hsu NC, Li H, Chung BC. 1999. Tissue-specific, hormonal, and developmental regulation of SCC-LacZ expression in transgenic mice leads to adrenocortical zone characterization. Endocrinology 140:5609-5618. Huang Y, Hu M, Hsu N, Wang CL, Chung B. 2001. Action of hormone responsive sequence in 2.3 kb promoter of CYP11A1. Mol Cell Endocrinol 175:205-210. Kaufman MH. 1992. The Atlas of Mouse Development. Keeney DS, Ikeda Y, Waterman MR, Parker KL. 1995. Cholesterol side-chain cleavage cytochrome P450 gene expression in the primitive gut of the mouse embryo does not require steroidogenic factor 1. Mol Endocrinol 9:1091-1098. Kellum R, Schedl P. 1991. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64:941-950. Lambard S, Silandre D, Delalande C, Denis-Galeraud I, Bourguiba S, Carreau S. 2005. Aromatase in testis: expression and role in male reproduction. J Steroid Biochem Mol Biol 95:63-69. Lecain E, Yang TH, Tran Ba Huy P. 2003. Steroidogenic enzyme expression in the rat cochlea. Acta Otolaryngol 123:187-191. Mauduit C, Hamamah S, Benahmed M. 1999. Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update 5:535-545. McMasters KM, Dickson LA, Shamy RV, Robischon K, Macdonald GJ, Moyle WR. 1987. Rat cholesterol side-chain cleavage enzyme (P-450scc): use of a cDNA probe to study the hormonal regulation of P-450scc mRNA levels in ovarian granulosa cells. Gene 57:1-9. Mellon SH, Miller WL, Bair SR, Moore CC, Vigne JL, Weiner RI. 1994. Steroidogenic adrenocortical cell lines produced by genetically targeted tumorigenesis in transgenic mice. Mol Endocrinol 8:97-108. Morohashi K, Fujii-Kuriyama Y, Okada Y, Sogawa K, Hirose T, Inayama S, Omura T. 1984. Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450(SCC) of bovine adrenal cortex. Proc Natl Acad Sci U S A 81:4647-4651. Mutskov VJ, Farrell CM, Wade PA, Wolffe AP, Felsenfeld G. 2002. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev 16:1540-1554. Okuyama E, Okazaki T, Furukawa A, Wu RF, Ichikawa Y. 1996. Molecular cloning and nucleotide sequences of cDNA clones of sheep and goat adrenocortical cytochromes P450scc (CYP11A1). J Steroid Biochem Mol Biol 57:179-185. Prioleau MN, Nony P, Simpson M, Felsenfeld G. 1999. An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. Embo J 18:4035-4048. Rommerts FF, Brinkman AO. 1981. Modulation of steroidogenic activities in testis Leydig cells. Mol Cell Endocrinol 21:15-28. Sauer B. 1998. Inducible gene targeting in mice using the Cre/lox system. Methods 14:381-392. Sauer B, Whealy M, Robbins A, Enquist L. 1987. Site-specific insertion of DNA into a pseudorabies virus vector. Proc Natl Acad Sci U S A 84:9108-9112. Shibuya K, Takata N, Hojo Y, Furukawa A, Yasumatsu N, Kimoto T, Enami T, Suzuki K, Tanabe N, Ishii H, Mukai H, Takahashi T, Hattori TA, Kawato S. 2003. Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochim Biophys Acta 1619:301-316. Shimshek DR, Kim J, Hubner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R. 2002. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32:19-26. Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C. 1998. Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 273:4883-4891. Simpson ER, Waterman MR. 1988. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 50:427-440. Slominski A, Ermak G, Mihm M. 1996. ACTH receptor, CYP11A1, CYP17 and CYP21A2 genes are expressed in skin. J Clin Endocrinol Metab 81:2746-2749. Soriano P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70-71. Stapleton G, Steel M, Richardson M, Mason JO, Rose KA, Morris RG, Lathe R. 1995. A novel cytochrome P450 expressed primarily in brain. J Biol Chem 270:29739-29745. Sternberg N, Sauer B, Hoess R, Abremski K. 1986. Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol 187:197-212. Stoffel-Wagner B. 2003. Neurosteroid biosynthesis in the human brain and its clinical implications. Ann N Y Acad Sci 1007:64-78. Stromstedt M, Waterman MR. 1995. Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Brain Res Mol Brain Res 34:75-88. Tom Strachan APR. 1999. Human Molecular Genetics 2, chapter 9: Garland Science. Tuckey RC. 2005. Progesterone synthesis by the human placenta. Placenta 26:273-281. Warner M, Gustafsson JA. 1995. Cytochrome P450 in the brain: neuroendocrine functions. Front Neuroendocrinol 16:224-236. Wolffe AP. 1997. Transcription control: repressed repeats express themselves. Curr Biol 7:R796-798. Yazawa T, Yamamoto T, Jin Y, Abe S. 2002. Follicle-stimulating hormone is indispensable for the last spermatogonial mitosis preceding meiosis initiation in newts (Cynops pyrrhogaster). Biol Reprod 66:14-20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32911 | - |
| dc.description.abstract | 類固醇荷爾蒙包括礦物皮質素、醣皮質素以及性荷爾蒙,對於多種正常生理功能的維持扮演了相當重要的角色。所有的類固醇都是由膽固醇所轉化而來的,在其轉化過程中,擔任第一個速率決定步驟的酶稱為膽固醇側鏈裂解酶,簡稱細胞色素P450scc。P450scc是CYP11A1基因的產物,由於類固醇荷爾蒙主要在腎上腺、性腺以及胎盤等器官中被合成,CYP11A1基因在這些地方的確有高度的表現。近年來研究還發現到腦部也可以生成類固醇,只是該處荷爾蒙生成基因,包括CYP11A1的表現量明顯比腎上腺還要來的低。在本論文研究中,我們利用一段人類CYP11A1基因上游約4.4 kb片段長的啟動子序列驅動Cre重組酶,並放置一小段來自雞的β-globin基因的HS4絕緣片段以阻擋染色體位置效應,以建立出「SCC-Cre轉殖小鼠」。我們將SCC-Cre轉殖小鼠藉由和帶有LacZ報導基因、並具有loxP序列的ROSA26小鼠交配,以驗證SCC-Cre轉殖小鼠的Cre重組酶活性。藉由X-gal染色方法,我們在所分析的大部份轉殖小鼠株號中,看到4.4 kb片段長的CYP11A1基因啟動子能夠驅動Cre表現在腎上腺皮質、睪丸的萊氏細胞以及卵巢內的濾泡細胞、黃體細胞和間質細胞處,而這些表現位置和內生性CYP11A1基因的表現分佈是相同的。除此之外,我們也看到Cre重組酶的活性在腦的部分區域也有表現。研究過程中我們更進一步發現,Cre重組酶也會表現在睪丸中非類固醇生成的精原細胞。藉由抗體的辨識,我們看到精原細胞上確實存在有明顯的LacZ蛋白質,甚至在下游精母細胞和精子也可以看到比較微弱的訊號。這個結果暗示著精原細胞可能具有荷爾蒙生成之潛能。總結本研究,我們成功地建立了SCC-Cre轉殖小鼠,能使Cre重組基因專一地表現於類固醇生成組織中,對於未來針對荷爾蒙生成細胞上相關基因功能之研究,將會是一項十分有力的工具。 | zh_TW |
| dc.description.abstract | Steroid hormones including mineralcorticoids, glucocorticoids, and sex hormones are crucial for a wide variety of physiologic functions. All steroids are converted from a common precursor, cholesterol. The first rate-limiting step of steroidogenesis is catalyzed by cytochrome P450scc, cholesterol side-chain cleavage enzyme, encoded by CYP11A1. Steroid hormones are mainly synthesized in adrenals, gonads and placenta and CYP11A1 is highly expressed in these steroidogenic organs. Recent studies have found that steroids can also be de novo synthesized in brain. However, the expression levels of steroidogenic genes including CYP11A1 in brain are much lower than those in adrenal glands. In this study, a 5’-flanking 4.4-kb region of human CYP11A1 gene was used to target Cre recombinase in transgenic mice, with two-copy HS4 elements of chicken β-globin gene to assure Cre expression and protect transgene against chromosome position effect. The transgenic mice were crossed to floxed ROSA26 reporter mice to examine the Cre activity. By X-gal staining assay, the results showed that the 4.4-kb fragment directed transgene expression in adrenal cortex, Leydig cells of testis and follicles, corpora lutea and stroma of ovary in most of lines, as endogenous Cyp11a1 expression patterns observed by in situ hybridization. In addition, Cre activity was also detected in brain tissues in strong expression lines. We further found that Cre was expressed in the spermatogonia of testis in all transgenic lines. The LacZ protein could be identified in spermatogonia by immunohistochemistry. Low amounts of endogenous P450scc protein in spermatogonia was visualized by IHC. It indicated that spermatogonia have the potential capacity for steroid hormones production. In conclusion, we established a SCC-Cre transgenic mouse line to provide a powerful system for studying the gene function in steroidogenic cell lineages. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:50Z (GMT). No. of bitstreams: 1 ntu-95-R93441002-1.pdf: 1757801 bytes, checksum: bccda86defee098533f6e19c698d5927 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 正文目錄 I
表次目錄 III 圖次目錄 III 附圖目錄 IV 中文摘要 V 英文摘要 VI 第一章、序言 1 一、 CYP11A1基因之特性 1 1、類固醇荷爾蒙的生成與生理功能 1 2、P450scc與人類CYP11A1基因 2 3、人類CYP11A1啟動子之特性 2 二、類固醇生成基因在睪丸的表現 3 三、Cre-loxP系統 4 1、Cre重組酶的源起與特性 4 2、Cre-loxP系統於情境化基因剔除上的應用 5 3、驗證轉殖動物體內Cre重組酶的活性 5 四、絕緣體(insulators)的屏壁作用 6 五、研究動機與目的 7 第二章、材料與方法 8 一、轉殖基因質體構築 8 二、轉殖小鼠之產生 8 三、SCC-Cre轉殖小鼠株之建立與繁衍 8 四、SCC-Cre轉殖小鼠與ROSA26小鼠之交配 8 五、基因型鑑定與分析 9 六、胚胎定義與組織分離 9 七、冷凍組織切片(共兩種) 9 八、石蠟組織切片 10 九、β-Galactosidase染色分析 10 十、原位雜交法(in situ hybridization) 11 十一、免疫組織螢光染色(immunofluorescence) 13 第三章、結果 14 一、轉殖基因之建構 14 二、SCC-Cre轉殖小鼠之產生 14 三、轉殖基因表現活性之偵測 15 四、SCC-Cre小鼠之分析與篩選 15 五、Cre重組酶於SCC-Cre小鼠胚胎時期之表現 19 六、內生性Cyp11a1基因於腎上腺和性腺之表現 20 七、Cyp11a1基因在精原細胞表現之可能性 20 第四章、討論 22 一、SCC-Cre轉殖小鼠之建立 22 二、HS4絕緣片段有助於SCC-Cre轉殖基因之表現 22 三、轉殖基因可以在SCC-Cre轉殖小鼠的腦組織表現 23 四、轉殖基因在SCC-Cre轉殖小鼠之胎盤組織沒有表現 24 五、轉殖基因在SCC-Cre轉殖小鼠之非典型類固醇生成組織中的表現 24 六、以Cre重組基因在SCC-Cre轉殖小鼠體內之表現,探討Cyp11a1 基因在精原細胞表現之可能性 25 七、SCC-Cre轉殖小鼠之應用 26 參考文獻 27 表次 表一、SCC-Cre轉殖小鼠之產 32 表二、SCC-Cre轉殖小鼠之Cre重組酶於成鼠體內之表現活性與組織分佈 33 表三、SCC-Cre轉殖小鼠之Cre重組酶於胚胎體內之表現活性與組織分佈 34 圖次 圖一、類固醇之生合成 35 圖二、轉殖基因架構 36 圖三、基因轉殖小鼠之基因型鑑定與分析 37 圖四、SCC-Cre轉殖小鼠株#16之Cre重組酶於成鼠之表現 38 圖五、SCC-Cre轉殖小鼠株#30之Cre重組酶於成鼠之表現 39 圖六、SCC-Cre轉殖小鼠株#41之Cre重組酶於成鼠之表現 40 圖七、SCC-Cre轉殖小鼠株#20之Cre重組酶於成鼠之表現 41 圖八、SCC-Cre轉殖小鼠株#11之Cre重組酶於成鼠之表現 42 圖九、SCC-Cre轉殖小鼠株#14之Cre重組酶於成鼠之表現 43 圖十、SCC-Cre轉殖小鼠株#1和#18之Cre重組酶無表現 44 圖十一、Cre轉殖基因於胚胎時期之表現 45 圖十二、SCC-Cre/R26R鼠於胚胎第15.5天時之Cre重組酶表現 46 圖十三、SCC-Cre/R26R小鼠之胎盤組織無Cre重組酶表現 47 圖十四、小鼠內生性Cyp11a1基因之表現 48 圖十五、Cre重組酶於精原細胞上之表現 49 圖十六、c-kit和LacZ共同表現於SCC-Cre/R26R成鼠之精原細胞 50 圖十七、LacZ與SCC於SCC-Cre/R26R成鼠精原細胞上之表現 51 附圖 附圖一、人類CYP11A1啟動子4.4 kb片段含有許多調節元素 52 附圖二、以Cre重組酶進行情境化基因剔除技術 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 膽固醇側鏈裂解酶 | zh_TW |
| dc.subject | Cre-loxP系統 | zh_TW |
| dc.subject | 腎上腺 | zh_TW |
| dc.subject | 性腺 | zh_TW |
| dc.subject | 精原細胞 | zh_TW |
| dc.subject | CYP11A1基因 | zh_TW |
| dc.subject | P450scc | en |
| dc.subject | testis | en |
| dc.subject | adrenal gland | en |
| dc.subject | ROSA26 | en |
| dc.subject | Cre-loxP | en |
| dc.subject | spermatogonia | en |
| dc.subject | ovary | en |
| dc.subject | CYP11A1 | en |
| dc.title | SCC-Cre轉殖小鼠之建立-
以人類CYP11A1基因啟動子驅動Cre重組酶的表現 | zh_TW |
| dc.title | Generation of SCC-Cre transgenic mice expressing Cre recombinase under control of human CYP11A1 promoter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳儀莊(Yi-Juang Chern),郭應誠(Ing-Cherng Guo),湯志永(Chih-Yung Tang) | |
| dc.subject.keyword | CYP11A1基因,膽固醇側鏈裂解酶,Cre-loxP系統,腎上腺,性腺,精原細胞, | zh_TW |
| dc.subject.keyword | CYP11A1,P450scc,Cre-loxP,ROSA26,adrenal gland,testis,ovary,spermatogonia, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
