請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝 | |
| dc.contributor.author | Min-Huei Lin | en |
| dc.contributor.author | 林銘煇 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:18:03Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | 參考文獻
1.http//www.aaos.org. 2.Homminga J.,Weinans H.,Gowin W.,Felsenberg D.,Huiskes R. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution.Spine ,2001,26,1555-1561 3.Galibert P.,Deramond H.,Rosat P.,Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty.Neurochirurgie,1987,33,166-168 4.Garfin S.R. ,Yuan H.A. ,Reiley M.A., Kyphoplasty and Vertebroplasty for the treatment of painful osteoporotic compression fracture Spine,2001,26,1511-1515 5.New and emerging techniques-surgical, Kyphoplasty, May 2003 6.許世昌,”新編解剖生理學”,永大書局 7.Marieb E.N.,Mallatt J.,Human anatomy.Second edition. Benjamin and Cummings.1996 8.Nordin M.,Frankel V.H.,Basic biomechanics of the musculoskeletal system.Third edition.Lippincott Willians and Wilkins.2001 9.Eriksen E.F.,Kassem M.,The cellular basis of bone remodeling.Triangle.1992,31,45-47 10.Ito Y.,Hasegawa Y.,Toda K.,Nakahara S.,Pathogenesis and diagnosis of delayed vertebral collapse resulting from osteoporotic spinal fracture.The Spine journal,2002,2,101-106 11.Peterlik M.,Aging,neuroendocrine function,and osteoporosis.Experimental Gerontology,1997,32,4,577-586 12.Lindsay R.,The menopause and osteoporosis.Obstetrics & Gynecology,1996,87,2,16-19 13.Riggs B.,Melton III L.J.,The worldwide problem of osteoporosis:Insight afforded by epidemiology .Bone,1995,17,5,505-511 14.Kanis J.A.,Johnell O.,Oden A.,Jonsson B.,De L.C.,Dawson A.,Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone,2000,27,5,585-590 15.Who are candidates for prevention and treatment for osteoporosis?Osteoporosis International.1997,7,1 16.Wark J.D.,Osteoporosis: pathogenesis, diagnosis, prevention and magagement. Clinical endocrinology and Metabolism.1993,7,151-181 17.Verlaan J.J.,Cumhur O.F.,Dhert W.,Anterior spinal column augmentation with injectable bone cements. Biomaterials,2005 18.Barr J.D.,Barr M.S.,Lemley T.J.,Percutaneous vertebroplasty for pain relief and spinal stabilization.Spine ,2000,25,923-928 19.Jensen M.E.,Evans A.J.,Mathis J.M.,Kallmes D.F.,Cloft H.J.,Dion J.E.,Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoprotic vertebral body compression fracture.American Society of Neuroradiology,1997,18,1897-1904 20.Pierre H.,Franck G.,Anne C., Bernard C.,Should percutaneous vertebroplasty be used to treat osteoporotic fractures? An update, Joint Bone Spine,2001,68,216-21 21.Isador H.,Lieberman M.D., MBA, Daisuke Togawa M.D., Mark M. Kayanja M.D.,Vertebroplasty and kyphoplasty: filler materials. The Spine Journal,2005,305–316 22.Gangi A., Kastler B.A., Dietemann J.L., Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. AJNR Am J Neuroradiol ,1994,15,83–6 23.Lieberman I.H., Dudeney S., Reinhardt M.K.,Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures.Spine,2001,26,1631–8 24.Fulmer M.T., Ison I.C., Hankermayer C.R.,Measurements of thesolubilities and dissolution rates of several hydroxyapatites. Biomaterial,2002,23,751–5 25.Seeherman H.J., Bouxsein M., Kim H.,Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model. J Bone Joint Surg Am,2004,86,1961–72 26.Wen-Yu Su , Feng-Huei Lin ,JS Sun,2001:Gentamicin loaded α-TCP/HAP Biphasic Calcium phosphate bone cement as drug delivery system for osteomyelitis 27.Peter S.J.,Kim P.,Yasko A.W.,Yaszemski M.J.,Mikos1 A.G.,Crosslinking characteristics of an injectable poly(propylene fumarate) /b-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement.J Biomed Mater res,1999,44,314–321 28.Behravesh E.,Shung A.K.,Jo S.,Mikos A.G.,Synthesis and Characterization of Triblock Copolymers of Methoxy Poly(ethylene glycol) and Poly(propylene fumarate) Biomacromolecules ,2002,3,153-158 29.Paynea R.G.,McGoniglea J.S.,Yaszemski M.J.,Yaskoc A.W.,Mikosa A.W.,Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate) Biomaterials,2002,23,4373–4380 30.Hedberga E.L., Shih C.K., Lemoine J.J., Timmer M.D., Liebschner MAK, Jansen J.A., Mikos A.G.,In vitro degradation of porous poly(propyle fumarate)/(poly(DL-lactic-co-glycolic acid)composite scaffolds. Biomaterials,2005,26,3215–3225 31.Hedberga E.L.,Kroese-Deutman H.C.,Shih C.K.,Crowtherc R.S.,Carney DH,Mikos A.G., Jansen J.A.,In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials,2005,26,4616–4623 32.Yaszemski M.J., Payne R., Hayes W.C., Langer R., Mikos A.G.,In vitro degradation of a poly(propylene fumarate)-based composite materials. Biomaterials,1996,17,2127-2130. 33.Gunatillake P.A.,Adhikari R.,BIODEGRADABLE SYNTHETIC POLYMERS FOR TISSUE ENGINEERING.European Cells and Materials,2003,5,1-16 34.Shung A.K., Timmer M.D., Jo S., Engel P.S., Mikos A.G.,Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. J Biomater Sci Polym ,2002,13,95–108. 35.Peter S.J.,Miller S.,Zhu G.,Yasko A.W.,Mikos1 A.G.,In vivo degradation of a poly(propylene fumarate)/β-tricalcium phosphate injectable composite scaffold.J Biomed Mater res,1998,41,1-7 36.Gresser J.D.,Hsu S.H.,Nagaoka H.,Lyons C.M.,Nieratko D.P.,Wise D.L.,Barabino G.A.,Trantolo D.J.,Analysis of a vinyl pyrrolidine/poly(propylene fumarate) resorbable bone cement. J. Biomed Mater Res,1995,29,1241-1247 37.Kharas G.B.,Kamenetsky M.,Simantirakis J.,Beinlich K.C.,Rizzo A.T.,Caywood G.A.,Watson K.,Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites. J.Appl.Polym.Sci.1997,66,1123-1137 38.Yang V.C.,Overview of drug delivery system.Albert B.,Prescott Professor of Pharmaceuyical Science,2000 39.Achim Gopfrrich,Mechanisms of polymer degradation and erosion.Biomaterial,1996,17,103-114 40.Mark D.T, Catherine G.A, Antonios G.M.,In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate.Biomaterials ,2003,24, 571–577 41.Hideki Aoki,”Medical Applications of Hydroxyapatite”1994 42.蔣耀漳,2003:以磷酸鈣鹽水泥作為胰臟移植免疫隔離材料之研究 43.余靖,” NMR Applications in Structural Biology” 44.Principles of Instrumental Analysis.fourth edition ,SKOOG/LEARY 45.Denizot F.,Lang R.,Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity andreliability.J.Immunol.Methods,1983,65,55-63 46.Cell Proliferation Reagent WST-1, Version July 2005 47.Goldstein S.A., Wilson D.L., Sonstegard D.A., Matthews L.S.,The mechanical properties of the human tibial trabecular bone as a function of metaphyseal location. J Biomech 1983,16,965–969. 48.Looney M.A., Park J.B.,Molecular and mechanical property changes during aging of bone cement in vitro and in vivo.J Biomed Mater Res, 1986,20,555–63 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32882 | - |
| dc.description.abstract | 脊椎壓迫性骨折為現今越來越常見的一個疾病。而引起脊椎壓迫性骨折的原因以骨質疏鬆為最主要因素,因為骨質疏鬆會使得骨頭脆弱增加骨折的危險。近年來,脊椎整形術開始被應用在治療壓迫性脊椎骨折方面。脊椎整形術的原理就是將骨水泥打入骨折部位去穩固它,達到紓解疼痛的效果。目前最常使用的骨水泥是PMMA,但是仍有一些缺點,如:不是生物降解性材料、聚合溫度過高、強度過強等。
高分子poly(propylene fumarate)具有低聚合溫度、生物可降解性、可當作注射型骨水泥應用。而磷酸鈣鹽水泥(calcium phosphate cements,CPC),具有相當高的生物相容性,可直接參與骨頭重建的過程。因此在本研究中,我們將兩者混合使用,希望能研發出新型的可注射式骨水泥,用於脊椎整形術,提供穩固的基本強度。 本實驗主要是要探討添加了CPC之後,對水泥強度、聚合溫度、裂解時間的影響。由實驗結果顯示,我們的水泥聚合時溫度在38~44℃間遠低於PMMA的聚合溫度(74℃)。初期強度具有61.1±3.7MPa,而經過了八週的裂解,強度依然都在58~60MPa±10MPa,比起PMMA有更相似於骨頭的強度。由此結果可顯示,我們開發出具有良好機械性質的可降解式骨水泥,可望在未來提供醫師施行在脊椎整形術上。 | zh_TW |
| dc.description.abstract | Vertebral compression fractures are quite common in worldwide. The most common cause is osteoporosis, which causes bone fragility and predisposes the bone to fractures. Vertebroplasty has been widely adopted to treat vertebral body compression fractures. Vertebroplasty, where bone cement is injected into the weakened vertebrae to stabilize them .Currently, the most commonly used injectable bone cement is poly(methyl methacrylate) (PMMA), but it suffers from the fact that it is not degraded and high curing temperature.
Several advantages of PPF has been investigated, including:low crosslinking temperature, biodegradable, injectable . Calcium phosphate cements(CPC)has good biocompatibility and offers the potential for resorption of the cement over time and replacement with new bone .In this study, we want to develop an injectable, biodegradeable bone cement which well be mixed PPF and CPC together. This composite can be used to fill skeletal defects, acting as a mechanical support at the defect site. The purpose of this study was to evaluate the effect of the incorporation of calcium phosphate cement filler on the degradation time, highest crosslinking temperature and compressive strength, respectively. Result show that the highest crosslinking temperature with the absolute values ranging from 38° to 44°C, which was much lower than that of 74°C for poly(methyl methacrylate) bone cement. The value of initial compressive strength was 61.1±3.7 MPa,and the level of compressive strength still in the range of 50~60±10 MPa after 8 weeks. Compare with PMMA, the compressive strength of new bone cement was more similar with native bone tissue. and could lasted over 2 months. Data shown that we have developed degradeable bone cement with well mechanical property and may applied in Vertebroplasty | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:03Z (GMT). No. of bitstreams: 1 ntu-95-R93548032-1.pdf: 4689212 bytes, checksum: 95cff25af783910fd4cd86435e8dea1b (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目 錄
中文摘要----------------------------------------------------------------------------------I Abstract-----------------------------------------------------------------------------------II 目錄--------------------------------------------------------------------------------------IV 圖目錄----------------------------------------------------------------------------------VII 表目錄------------------------------------------------------------------------------------X 第一章 簡介-----------------------------------------------------------------------------1 1.1 前言---------------------------------------------------------------------------------- 1 1.2脊椎的基礎構造及功能------------------------------------------------------------3 1.3骨骼的代謝和生長------------------------------------------------------------------6 1.4骨質疏鬆症---------------------------------------------------------------------------8 1.5現今治療壓迫性骨折之概況----------------------------------------------------11 1.6現今治療壓迫性骨折之新進展-------------------------------------------------13 1.7 現行骨水泥之性質---------------------------------------------------------------15 1.8 研究動機與目的------------------------------------------------------------------18 第二章 基本理論----------------------------------------------------------------------19 2.1 poly(propylene fumarate) (PPF)概述-------------------------------------------19 2.1.1 poly(propylene fumarate)的合成及結構--------------------------------19 2.1.2 poly(propylene fumarate)的基本性質-----------------------------------21 2.1.3 高分子裂解機制-----------------------------------------------------------22 2.2 α-TCP/HAP的製備原理----------------------------------------------------------24 2.2.1氫氧基磷灰石(HAP)的製備----------------------------------------------24 2.2.2 HAP轉變成α-TCP/HAP雙相材料的原理------------------------------26 2.3 α-TCP/HAP雙相材料的固化機制----------------------------------------------27 第三章 實驗步驟與方法-------------------------------------------------------------28 3.1 實驗儀器---------------------------------------------------------------------------29 3.2 實驗藥品---------------------------------------------------------------------------30 3.3 材料製備---------------------------------------------------------------------------31 3.3.1 氫氧基磷灰石粉末合成--------------------------------------------------31 3.3.2 α-TCP/HAP雙相粉末合成------------------------------------------------32 3.3.3 poly(propylene fumarate)(PPF)製備------------------------------------33 3.3.4 PPF的純化-------------------------------------------------------------------35 3.3.5 骨水泥樣本製備-----------------------------------------------------------36 3.4 材料性質分析---------------------------------------------------------------------38 3.4.1 XRD分析---------------------------------------------------------------------38 3.4.2 NMR分析--------------------------------------------------------------------39 3.4.3 GPC分析---------------------------------------------------------------------39 3.5 骨水泥性質測試------------------------------------------------------------------40 3.5.1 聚合溫度測試--------------------------------------------------------------40 3.5.2 體外裂解測試--------------------------------------------------------------40 3.5.3 抗壓強度測試--------------------------------------------------------------41 3.5.4 重量損失測試--------------------------------------------------------------41 3.5.5 SEM分析---------------------------------------------------------------------41 3.5.6 X光不穿透性測試----------------------------------------------------------43 3.6 材料滅菌方式---------------------------------------------------------------------43 3.7 骨髓瘤細胞分離及培養---------------------------------------------------------43 3.8 生物相容性測試------------------------------------------------------------------44 3.8.1 WST-1細胞活性測試------------------------------------------------------44 3.8.2 LDH細胞毒性測試---------------------------------------------------------45 3.8.3骨水泥聚合之細胞毒性測試----------------------------------------------46 第四章 結果----------------------------------------------------------------------------48 4.1 材料定性分析---------------------------------------------------------------------48 4.2 骨水泥性質分析------------------------------------------------------------------52 4.3 生物相容性測試------------------------------------------------------------------60 第五章 討論----------------------------------------------------------------------------66 第六章 結論----------------------------------------------------------------------------69 附錄A.U2-OS細胞株資料------------------------------------------------------------70 參考文獻--------------------------------------------------------------------------------71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷酸鈣鹽水泥 | zh_TW |
| dc.subject | 脊椎整形術 | zh_TW |
| dc.subject | poly(propylene fumarate) | zh_TW |
| dc.subject | 注射式骨水泥 | zh_TW |
| dc.subject | 生物可裂解性 | zh_TW |
| dc.subject | Vertebroplasty | en |
| dc.subject | poly(propylene fumarate) | en |
| dc.subject | calcium phosphate cements | en |
| dc.subject | biodegradable | en |
| dc.subject | injectable bone cement | en |
| dc.title | 生物可分解性注射式骨水泥於脊椎整形術應用之研究 | zh_TW |
| dc.title | The development of injectable and biodegradeable bone cement in vertebroplasty. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王盈錦,廖峻德,郭士民 | |
| dc.subject.keyword | 脊椎整形術,poly(propylene fumarate),磷酸鈣鹽水泥,生物可裂解性,注射式骨水泥, | zh_TW |
| dc.subject.keyword | Vertebroplasty,poly(propylene fumarate),calcium phosphate cements,biodegradable,injectable bone cement, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 4.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
