Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李昆達
dc.contributor.authorBo-Lun Chenen
dc.contributor.author陳柏綸zh_TW
dc.date.accessioned2021-06-13T04:17:10Z-
dc.date.available2016-09-21
dc.date.copyright2011-09-21
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citationReference
Aki, T., Hachida, K., Yoshinaga, M., Katai, Y., Yamasaki, T., Kawamoto, S., Kakizono, T., Maoka, T., Shigeta, S., Suzuki, O., and Ono, K. (2003). Thraustochytrid as a potential source of carotenoids. Journal of the American Oil Chemists Society 80, 789-794.
An, G.H., and Johnson, E.A. (1990). Influence of Light on Growth and Pigmentation of the Yeast Phaffia-Rhodozyma. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 57, 191-203.
An, G.H., Schuman, D.B., and Johnson, E.A. (1989). Isolation of Phaffia-Rhodozyma Mutants with Increased Astaxanthin Content. Applied and Environmental Microbiology 55, 116-124.
Armenta, R.E., Burja, A., Radianingtyas, H., and Barrow, C.J. (2006). Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the Thraustochytrid strain ONC-T18. J Agric Food Chem 54, 9752-9758.
Boussiba, S., and Vonshak, A. (1991). Astaxanthin Accumulation in the Green-Alga Haematococcus-Pluvialis. Plant and Cell Physiology 32, 1077-1082.
Boussiba, S., Fan, L., and Vonshak, A. (1992). Enhancement and Determination of Astaxanthin Accumulation in Green-Alga Haematococcus-Pluvialis. Methods in Enzymology 213, 386-391.
Bungay, H.R. (1993). BASIC Biochemical Engineering. (Troy: BiLine Associates).
Burja, A.M., Radianingtyas, H., Windust, A., and Barrow, C.J. (2006). Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Applied Microbiology and Biotechnology 72, 1161-1169.
Calo, P., Velazquez, J.B., Sieiro, C., Blanco, P., Longo, E., and Villa, T.G. (1995). Analysis of Astaxanthin and Other Carotenoids from Several Phaffia-Rhodozyma Mutants. Journal of Agricultural and Food Chemistry 43, 1396-1399.
Carmona, M.L., Naganuma, T., and Yamaoka, Y. (2003). Identification by HPLC-MS of carotenoids of the Thraustochytrium CHN-1 strain isolated from the Seto Inland Sea. Biosci Biotechnol Biochem 67, 884-888.
Cavalier-Smith, T., Allsopp, M.T.E.P., and Chao, E.E. (1994). Thraustochytrids are Chromists, not Fungi: 18s rRNA Signatures of Heterokonta. Philosophical Transactions: Biological Sciences 346, 387-397.
Chan, H.Y., and Ho, K.P. (1999). Growth and carotenoid production by pH-stat cultures of Phaffia rhodozyma. Biotechnology Letters 21, 953-958.
Chi, Z., Hu, B., Liu, Y., Frear, C., Wen, Z., and Chen, S. (2007). Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process. Appl Biochem Biotechnol 137-140, 805-815.
Crawford, M.A., Costeloe, K., Ghebremeskel, K., Phylactos, A., Skirvin, L., and Stacey, F. (1997). Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies? American Journal of Clinical Nutrition 66, S1032-S1041.
Darley, W.M., Porter, D., and Fuller, M.S. (1973). Cell wall composition and synthesis via Golgi-directed scale formation in the marine eucaryote, Schizochytrium aggregatum, with a note on Thraustochytrium sp. Arch Mikrobiol 90, 89-106.
de la Fuente, J.L., Rodriguez-Saiz, M., Schleissner, C., Diez, B., Peiro, E., and Barredo, J.L. (2010). High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. Journal of Biotechnology 148, 144-146.
Deckelbaum, R.J., Worgall, T.S., and Seo, T. (2006). n-3 fatty acids and gene expression. Am J Clin Nutr 83, 1520S-1525S.
Del Campo, J.A., Garcia-Gonzalez, M., and Guerrero, M.G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74, 1163-1174.
Fan, K.W., Vrijmoed, L.L.P., and Jones, E.B.G. (2002). Physiological studies of subtropical mangrove thraustochytrids. Botanica Marina 45, 50-57.
Ganuza, E., Anderson, A.J., and Ratledge, C. (2008). High-cell-density cultivation of Schizochytrium sp in an ammonium/pH-auxostat fed-batch system. Biotechnology Letters 30, 1559-1564.
Garrill, A., Clipson, N.J.W., and Jennings, D.H. (1992). Preliminary-Observations on the Monovalent Cation Relations of Thraustochytrium-Aureum, a Fungus Requiring Sodium for Growth. Mycological Research 96, 295-304.
Ghose, T.K. (1987). Measurement of Cellulase Activities. Pure and Applied Chemistry 59, 257-268.
Giusto, N.M., Pasquare, S.J., Salvador, G.A., Castagnet, P.I., Roque, M.E., and de Boschero, M.G.I. (2000). Lipid metabolism in vertebrate retinal rod outer segments. Progress in Lipid Research 39, 315-391.
Goldstein, S. (1963). Development and Nutrition of New Species of Thraustochytrium. American Journal of Botany 50, 271-&.
Goldstein, S. (1973). Zoosporic marine fungi (Thraustochytriaceae and Dermocystidiaceae). Annu Rev Microbiol 27, 13-26.
Gu, W.L., An, G.H., and Johnson, E.A. (1997). Ethanol increases carotenoid production in Phaffia rhodozyma. J Ind Microbiol Biotechnol 19, 114-117.
Guerin, M., Huntley, M.E., and Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology 21, 210-216.
Guerrero, M.G., Del Campo, J.A., and Garcia-Gonzalez, M. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology 74, 1163-1174.
Hardman, W.E. (2004). (n-3) fatty acids and cancer therapy. J Nutr 134, 3427S-3430S.
Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., and Watanabe, H. (2006). Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69, 443-449.
Iida, I., Nakahara, T., Yokochi, T., Kamisaka, Y., Yagi, H., Yamaoka, M., and Suzuki, O. (1996). Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. Journal of Fermentation and Bioengineering 81, 76-78.
Iigusa, H., Yoshida, Y., and Hasunuma, K. (2005). Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. Febs Letters 579, 4012-4016.
Jakobsen, A.N., Aasen, I.M., Josefsen, K.D., and Strom, A.R. (2008). Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80, 297-306.
Kagan, M., and Braun, S. (2004). Processes for extracting carotenoids and for preparing feed materials. In US Patent 6818239 B2.
Kesava, S.S., An, G.H., Kim, C.H., Rhee, S.K., and Choi, E.S. (1998). An industrial medium for improved production of carotenoids from a mutant strain of Phaffia rhodozyma. Bioprocess Engineering 19, 165-170.
Kobayashi, M., Kakizono, T., and Nagai, S. (1993). Enhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis. Appl Environ Microbiol 59, 867-873.
Lewis, T.E., Nichols, P.D., and McMeekin, T.A. (1999). The biotechnological potential of thraustochytrids. Marine Biotechnology 1, 580-587.
Linden, H., and Steinbrenner, J. (2001). Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiology 125, 810-817.
Lorenz, R.T., and Cysewski, G.R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18, 160-167.
Ma, R.Y.M., and Chen, F. (2001). Induction of astaxanthin formation by reactive oxygen species in mixotrophic culture of Chlorococcum sp. Biotechnology Letters 23, 519-523.
Margalith, P.Z. (1999). Production of ketocarotenoids by microalgae. Applied Microbiology and Biotechnology 51, 431-438.
Meyer, P.S., and Dupreez, J.C. (1994). Photo-Regulated Astaxanthin Production by Phaffia-Rhodozyma Mutants. Systematic and Applied Microbiology 17, 24-31.
Miki, W. (1991). Biological Functions and Activities of Animal Carotenoids. Pure and Applied Chemistry 63, 141-146.
Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31, 426-428.
Moss, S.T. (1985). An Ultrastructural-Study of Taxonomically Significant Characters of the Thraustochytriales and the Labyrinthulales. Botanical Journal of the Linnean Society 91, 329-357.
Naito, Y., Uchiyama, K., Aoi, W., Hasegawa, G., Nakamura, N., Yoshida, N., Maoka, T., Takahashi, J., and Yoshikawa, T. (2004). Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice. Biofactors 20, 49-59.
Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology 12, 499-506.
Perkins, F.O. (1973). Observations of Thraustochytriaceous (Phycomycetes) and Labyrinthulid (Rhisopodea) Ectoplasmic Nets on Natural and Artificial Substrates, an Electron-Microscope Study. Canadian Journal of Botany-Revue Canadienne De Botanique 51, 485-&.
Raghukumar, S. (2008). Thraustochytrid Marine Protists: Production of PUFAs and Other Emerging Technologies. Marine Biotechnology 10, 631-640.
Ramirez, J., Gutierrez, H., and Gschaedler, A. (2001). Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. Journal of Biotechnology 88, 259-268.
Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86, 807-815.
Scharer, L., Knoflach, D., Vizoso, D.B., Rieger, G., and Peintner, U. (2007). Thraustochytrids as novel parasitic protists of marine free-living flatworms: Thraustochytrium caudivorum sp nov parasitizes Macrostomum lignano. Marine Biology 152, 1095-1104.
Schroeder, W.A., and Johnson, E.A. (1993). Antioxidant Role of Carotenoids in Phaffia-Rhodozyma. Journal of General Microbiology 139, 907-912.
Schroeder, W.A., and Johnson, E.A. (1995). Singlet Oxygen and Peroxyl Radicals Regulate Carotenoid Biosynthesis in Phaffia-Rhodozyma. Journal of Biological Chemistry 270, 18374-18379.
Siegenth.Pa, Belsky, M.M., Goldstei.S, and Menna, M. (1967). Phosphate Uptake in an Obligately Marine Fungus .2. Role of Culture Conditions Energy Sources and Inhibitors. Journal of Bacteriology 93, 1281-&.
Simopoulos, A.P. (1999). Essential fatty acids in health and chronic disease. American Journal of Clinical Nutrition 70, 560s-569s.
Stillwell, W., and Wassall, S.R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126, 1-27.
Taoka, Y., Nagano, N., Okita, Y., Izumida, H., Sugimoto, S., and Hayashi, M. (2009). Extracellular Enzymes Produced by Marine Eukaryotes, Thraustochytrids. Bioscience Biotechnology and Biochemistry 73, 180-182.
Tian, Y.X., Han, R.M., Zhang, J.P., and Skibsted, L.H. (2008). Effect of polar solvents on beta-carotene radical precursor (vol 42, pg 281, 2008). Free Radical Research 42, 531-531.
Ukibe, K., Hashida, K., Yoshida, N., and Takagi, H. (2009). Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75, 7205-7211.
Vazquez, M., and Martin, A.M. (1998). Optimization of Phaffia rhodozyma continuous culture through response surface methodology. Biotechnology and Bioengineering 57, 314-320.
Ward, O.P., and Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry 40, 3627-3652.
Whyte, J.N.C., and Sherry, K.L. (2001). Pigmentation and composition of flesh of Atlantic salmon fed diets supplemented with the yeast Phaffia rhodozyma. North American Journal of Aquaculture 63, 52-57.
Yamane, Y., Higashida, K., Nakashimada, Y., Kakizono, T., and Nishio, N. (1997). Astaxanthin production by Phaffia rhodozyma enhanced in fed-batch culture with glucose and ethanol feeding. Biotechnology Letters 19, 1109-1111.
Yamasaki, T., Aki, T., Shinozaki, M., Taguchi, M., Kawamoto, S., and Ono, K. (2006). Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng 102, 323-327.
Yokochi, T., Honda, D., Higashihara, T., and Nakahara, T. (1998). Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Applied Microbiology and Biotechnology 49, 72-76.
Yuan, J.P., Peng, J., Yin, K., and Wang, J.H. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55, 150-165.
Zlotnik, I., Sukenik, A., and Dubinsky, Z. (1993). Physiological and Photosynthetic Changes during the Formation of Red Aplanospores in the Chlorophyte Haematococcus-Pluvialis. Journal of Phycology 29, 463-469.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32851-
dc.description.abstractThraustochytrium sp. FJ-01具有生合成蝦紅素及β胡蘿蔔素的能力,但目前較少以發酵槽培養破壺囊藻生產蝦紅素的報導。本研究經最適化探討,適合蝦紅素生產之培養基組成為20.00 g/L葡萄糖、1.33 g/L蛋白腖、1.33 g/L酵母抽出物,1/2海水濃度。於搖瓶批次培養中第4天細胞密度達5.13 g/L ,第5天β胡蘿蔔素濃度為17.52 mg/L,第6天蝦紅素濃度21.30 mg/L,並分別達到細胞乾重的0.45 %及0.93 %。FJ-01之蝦紅素濃度最佳對碳收率 (rate of glucose utilisation for the yield of astaxanthin),為培養基濃度介於上述培養基的1-2倍濃度之間。在10天發酵槽批次培養中,第4天細胞密度達6.25 g/L,並發現第10天其蝦紅素產量達14.52 mg/L,占細胞乾重0.43 %。於發酵槽配合多次脈衝式饋料 (multi-pulse fed-batch) 策略中經16天培養,可有效將細胞密度提升3倍達19.8 g/L,蝦紅素濃度達至54.18 mg/L (占細胞乾重的0.28 % )、β胡蘿蔔素濃度達63.72 mg/L (占細胞乾重的 0.32 % )。於發酵槽連續式饋料培養中,在維持整個培養過程中粗脂肪產量占細胞乾重的70 % 以上的前提之下,進一步將蝦紅素日產量 (daily productivity) 由多次脈衝式饋料的3.70 mg/L/day 提升至7.80 mg/L/day。zh_TW
dc.description.abstractThraustochytrium sp. FJ-01 can synthesize and accumulate astaxanthin and β-carotene. However, there are few research about how to mass production of astaxanthin by Thraustochytrium sp.. After medium optimization, the optimized medium for astaxanthin production contains 20.0 g glucose, 1.33 g peptone, 1.33 g yeast extract per liter of half salt concentration seawater, which produced a biomass of 5.13 g/L after 4 days, and yielded β-carotene 17.52 mg/L (about 0.45 % of dry cell weight) after 5 days and astaxanthin at 21.30 mg/L (about 0.93 % of dry cell weight) after 6 days in Hinton’s flask. The most efficient rate of glucose utilization for the yield of astaxanthin in FJ-01 is 1 and 2 times the concentration of the medium which been mentioned above. Batch culture in fermentor with the optimized medium, which produced a biomass of 6.25 g/L at fourth day and we found the production of astaxanthin increased stably to 14.52 mg/L (about 0.43 % of biomass) after 10 days. In the multi-pulsed fed-batch in fermentors, three-times the biomass to 19.8 g/L and the production and cell content of astaxanthin and β-carotene reached 55.13 mg/L (0.28 %) and 63.72 mg/L (0.32 %) respectively in 16 days culture. In continuous fed-batch culture (in fermentor) we not only kept the crude lipid cell content above 70 % of cell dry weight in the whole culture period but also increased the daily productivity of astaxanthin from 3.70 mg/L/day (in multi-pulse fed-batch culture) to 7.80 mg/L/day.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:17:10Z (GMT). No. of bitstreams: 1
ntu-100-R97b47107-1.pdf: 3262299 bytes, checksum: 9bcdd4fa8e24678dcb8d40b86ba73733 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書
誌謝
中文摘要 I
Abstract (英文摘要) II
Abbreviation III
專有名詞 中英文對照表 IV
Contents V
Contents of tables and figures VIII
第一章 Introduction 1
1.1 Thraustochytrium sp. 2
1.2 PUFAs, polyunsaturated fatty acids 6
1.3 carotenoids 10
1.3.1 astaxanthin 11
1.4 The competitors on natural (biological-derived) astaxanthin 14
1.4.1 Xanthophyllomyces dendrorhous 14
1.4.2 Haematococcus pluvialis 15
1.5 fermentation process 16
1.5.1 fermentation process – batch culture 16
1.5.2 fermentation process - fed-batch culture 16
1.6 Aim of this study 18
1.7 Flow chart of this study 18
Chapter II Materials and methods 20
2.1.1 Source of this microorganism 21
2.1.2 Preservation of Thraustochytrium sp. FJ-01 21
2.2 Culture conditions 21
2.3.1 Determination of dry cell weight (DCW) 23
2.3.2 Analysis of culture broth (residual glucose) 23
2.3.3 A suitable carotenoids extraction protocol for FJ-01 24
2.4 HPLC analysis of carotenoids 25
2.5.1 Identification of the pigments extracted from Thraustochytrium sp.
FJ-01
27
2.6.1 Preparation of crude lipid extract andfatty acid ethyl ester (FAEE) 27
2.6.2 GC analysis of FAEEs 28
2.7.1 Batch culture in bioreactor 29
2.7.2 Multi-pulse fed-batch in bioreactor 29
2.7.3 Continuous fed batch in bioreactor 30
Chapter III Results and discussions 31
3 Pigment identification 32
3.1 Carotenoids extraction solvent 32
3.2 Carotenoids extraction method 34
3.3 Identification of astaxanthin and β-carotene 36
3.4 Culture strategy 39
3.4.1 Hinton’s flask with basal medium 39
3.4.2 Usage of carbon source by FJ-01 42
3.4.3 Sea water concentration 45
3.4.4 C/N ratio 48
3.4.5 medium fold 53
3.5 culture in bioreactor 57
3.5.1 Batch culture of bioreactor 57
3.5.2 Multi-pulse fed-batch in bioreactor 62
3.5.3 Continuous fed batch culture in bioreactor 65
Chapter IV conclusion 68
References 72
Appendix 1 ORAC values of antioxidants 78
Appendix 2 Screening the stimulants for astaxanthin production 79
Appendix 2.1 light 79
Appendix 2.2 triclosan 82
Appendix 2.3 H2O2 84
Appendix 2.4 ethanol 86
dc.language.isoen
dc.subjectContinuous批次饋料培養zh_TW
dc.subject破壺囊藻zh_TW
dc.subject蝦紅素zh_TW
dc.subjectβ胡蘿蔔素zh_TW
dc.subject多元不飽和脂肪酸zh_TW
dc.subject批次培養zh_TW
dc.subject批次饋料培養zh_TW
dc.subjectMulti-pulse批次饋料培養zh_TW
dc.subjectbatch cultureen
dc.subjectfed-batch cultureen
dc.subjectThraustochytrium sp.en
dc.subjectastaxanthinen
dc.subjectβ-caroteneen
dc.subjectpolyunsaturated fatty acid (PUFA)en
dc.subjectcontinuous fed batch cultureen
dc.subjectMulti-pulse fed-batch cultureen
dc.title破壺囊藻之饋料培養zh_TW
dc.titleFed-batch culture of Thraustochytrium sp.en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇遠志,林璧鳳,呂誌翼,賴宗賢
dc.subject.keyword破壺囊藻,蝦紅素,β胡蘿蔔素,多元不飽和脂肪酸,批次培養,批次饋料培養,Multi-pulse批次饋料培養,Continuous批次饋料培養,zh_TW
dc.subject.keywordThraustochytrium sp.,astaxanthin,β-carotene,polyunsaturated fatty acid (PUFA),batch culture,fed-batch culture,Multi-pulse fed-batch culture,continuous fed batch culture,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2011-08-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved