請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32840完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳仁治(Jen-Chih Chen) | |
| dc.contributor.author | Hsiao-wei Chen | en |
| dc.contributor.author | 陳筱薇 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:16:53Z | - |
| dc.date.available | 2014-08-01 | |
| dc.date.copyright | 2011-08-01 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-28 | |
| dc.identifier.citation | Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18: 1134-1151
Avery GS (1933) Structure and development of the tobacco leaf. Am J Bot 20: 565-592 Carpenter R, Copsey L, Vincent C, Doyle S, Magrath R, Coen E (1995) Control of flower development and phyllotaxy by meristem identity genes in Antirrhinum. Plant Cell 7: 2001-2011 Caruso JL (1968) Morphogenetic Aspects of a Leafless Mutant in Tomato .I. General Patterns in Development. Am J Bot 55: 1169-& Chen J-C, Jiang C-Z, Gookin T, Hunter D, Clark D, Reid M (2004) Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol Biol 55: 521-530 Coen ES, Meyerowitz EM (1991) The war of the whorls [mdash] genetic interactions controlling flower development. Nature 353: 31-37 Corley SB, Carpenter R, Copsey L, Coen E (2005) Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc. Natl Acad. Sci. USA 102: 5068-5073 Covey SN, Al-Kaff NS (2000) Plant DNA viruses and gene silencing. Plant Mol Biol 43: 307-322 Crawford BCW, Nath U, Carpenter R, Coen E (2004) CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol. 135: 244-253 Cubas P, Aguilar-Martinez JA, Poza-Carrion C (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19: 458-472 Cubas P, Lauter N, Doebley J, Coen E (1999a) The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18: 215-222 Cubas P, Lauter N, Doebley J, Coen E (1999b) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18: 215-222 Dengler NG, Tsukaya H (2001) Leaf morphogenesis in dicotyledons: Current issues. Int J Plant Sci 162: 459-464 Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386: 485-488 Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215: 407-419 Elliot RC (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8: 155-168 Eshed Y, Efroni I, Blum E, Goldshmidt A (2008) A Protracted and Dynamic Maturation Schedule Underlies Arabidopsis Leaf Development. Plant Cell 20: 2293-2306 Fobert PR, Coen ES, Murphy GJP, Doonan JH (1994) Patterns of Cell-Division Revealed by Transcriptional Regulation of Genes during the Cell-Cycle in Plants. Embo J 13: 616-624 Galego L, Almeida J (2002) Role of DIVARICATA in the control of dorsoventral symmetry in Antirrhinum flowers. Genes Dev. 16: 880-891 Gaudin V, Lunness PA, Fobert PR, Towers M, Riou-Khamlichi C, Murray JAH, Coen E, Doonan JH (2000) The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the cycloidea gene. Plant Physiol 122: 1137-1148 Golz JF, Roccaro M, Kuzoff R, Hudson A (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131: 3661-3670 Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: The significance of marginal blastozones in angiosperms. Plant Syst Evol 199: 121-152 Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: Genetic manipulation of leaf architecture in tomato. Cell 84: 735-744 Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130: 2555-2565 Holtan HEE, Hake S (2003) Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 165: 1541-1550 Hu Y, Xie A, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15: 1951-1961 Jack T, Nag A, King S (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. P Natl Acad Sci USA 106: 22534-22539 Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotropic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52: 831-841 Kaplan DR (2001) Fundamental concepts of leaf morphology and morphogenesis: A contribution to the interpretation of molecular genetic mutants. Int J Plant Sci 162: 465-474 Keck E, McSteen P, Carpenter R, Coen E (2003) Separation of genetic functions controlling organ identity in flowers. EMBO J. 22: 1058-1066 Kessler S, Kim M, Pham T, Weber N, Sinha N (2001) Mutations altering leaf morphology in tomato. Int J Plant Sci 162: 475-492 Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Thompson WF, Robertson D (1998) Gene silencing from plant DNA carried by a Geminivirus. Plant J 14: 91-100 Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8: 137-153 Kosugi S, Ohashi Y (1997) PCF1 and PCF2 Specifically Bind to cis Elements in the Rice Proliferating Cell Nuclear Antigen Gene. The Plant Cell Online 9: 1607-1619 Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6: 688-698 Kumagai MH, Donson J, Dellacioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived Rna. P Natl Acad Sci USA 92: 1679-1683 Kumar S, Tamura K, Dudley J, Nei M (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599 Lee Y, Ahn C, Han JJ, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419 Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. Embo J 21: 4663-4670 Liu YL, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31: 777-786 Llave C, Kasschau KD, Rector MA, Carrington JC (2002a) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14: 1605-1619 Llave C, Xie ZX, Kasschau KD, Carrington JC (2002b) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297: 2053-2056 Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222: 89-111 Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303: 95-98 Luo D (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99: 367-376 Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383: 794-799 Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends in Plant Science 15: 31-39 Martin C, Baumann K, Perez-Rodriguez M, Bradley D, Venail J, Bailey P, Jin HL, Koes R, Roberts K (2007) Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134: 1691-1701 Mathan DS, Jenkins JA (1960) Chemically Induced Phenocopy of a Tomato Mutant. Science 131: 36-37 Menzel R, Gumbert A, Kunze J, Shmida A, Vorobyev M (1997) Pollinators' strategies in finding flowers. Israel J Plant Sci 45: 141-156 Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl Acad. Sci. USA 97: 942-947 Nath U, Crawford BCW, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299: 1404-1407 Ohme-Takagi M, Koyama T, Furutani M, Tasaka M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19: 473-484 Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39: 787-791 Ori N, Shleizer-Burko S, Burko Y, Ben-Herzel O (2011) Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development 138: 695-704 Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425: 257-263 Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJM (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132: 1382-1390 Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, Yanofsky MF (2001) Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11: 182-184 Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C (2005) Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132: 359-370 Poethig RS, Sussex IM (1985) The Developmental Morphology and Growth Dynamics of the Tobacco Leaf. Planta 165: 158-169 Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11: 1207-1215 Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Gene Dev 16: 1616-1626 Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110: 513-520 Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937-946 Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of MicroRNAs on the plant transcriptome. Dev Cell 8: 517-527 Siegfried KR (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126: 4117-4128 Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM (2000) EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C-elegans. Curr Biol 10: 169-178 Smyth DR, Bowman JL, Meyerowitz EM (1990) Early Flower Development in Arabidopsis. Plant Cell 2: 755-767 Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. P Natl Acad Sci USA 98: 3898-3903 Stettler RF (1964) Dosage Effects of Lanceolate Gene in Tomato. Am J Bot 51: 253-& Sylvester AW, Cande WZ, Freeling M (1990) Division and Differentiation during Normal and Liguleless-1 Maize Leaf Development. Development 110: 985-1000 Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1 gene, RNA interference, and transposon silencing in C-elegans. Cell 99: 123-132 Valoczi A, Varallyay E, Kauppinen S, Burgyan J, Havelda Z (2006) Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant J 47: 140-151 Vincent CA, Coen ES (2004) A temporal and morphological framework for flower development in Antirrhinum majus. Can J Bot 82: 681-690 Weigel D, Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC (2007) Sequence and expression differences underlie functional specialization of Arabidopsis MicroRNAs miR159 and miR319. Dev Cell 13: 115-125 Weigel D, Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. Plos Biol 6: 1991-2001 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32840 | - |
| dc.description.abstract | 自然界中有形形色色的花,植物發展出此一多變多彩的誘人器官,不外乎是為了繁衍下一代。前人研究關於影響植物花器的基因中,CYC是一決定花朵兩側對稱的重要因子。CYC屬於TCP transcription factor,本論文研究以TCP domain序列對矮牽牛EST資料庫進行BLAST,得到兩段CYC-like的片段,利用virus-induced gene silencing (VIGS)技術觀察此二基因表現量的降低對花朵外觀的影響。結果發現花朵對稱性經VIGS處理後並無影響,然而以帶有其中一個基因片段的病毒感染之矮牽牛在花朵向外的開展程度中與控制組花朵有明顯的差異。將此一基因cDNA片段進行RACE PCR取得全長的轉譯區後,將其衍生之胺基酸序列進行序列比對,發現其為TCP transcription factor上屬於CIN subgroup之蛋白,與金魚草(Antirrihnum majas)的CINCINNATA、阿拉伯芥(Arabidopsis thaliana L. )的TCP4以及蕃茄(Solanum lycopersicon L.)中的LA親緣關係相近,其中SlLA可能為直向同源基因(ortholog),因此命名此基因為PhLA。前人對AmCIN、AtTCP4和SlLA的研究顯示,在此三物種中這些基因的突變株,同時影響花和葉的型態,但在矮牽牛中PhLA表現量的降低僅在花的型態有顯著差異。本研究針對矮牽牛VIGS處理後觀察到的性狀為基礎,進行RT-PCR半定量、原位雜交和電子顯微鏡觀察細胞等技術分析PhLA在矮牽牛花朵的生長發育上所扮演的角色。目前研究結果顯示,當PhLA表現量下降時,花冠翼中脈部份的細胞由原本立體錐狀轉為較大且立體感下降的平坦細胞,與在VIGS處理植株花朵,花冠翼測量得到的較小最小寬、較大最大寬和較長的高有正向關係。此外,PhLA所屬的CIN-subgroup基因多有一miR319的辨識位置,前人研究在阿拉伯芥與蕃茄當中都證實miR319的表現會造成目標基因表現量的下降,進而對花朵或葉的生長有影響。矮牽牛PhLA中也在靠近3’端處定位出一miR319辦識位置,推測PhLA亦可受miR319調控,並且此一調控可能為決定花朵型態的重要因子。本研究利用VIGS技術,了解PhLA在演化中所扮演的角色,同時探討PhLA與miR319間的調控機制對花朵開展性的影響。 | zh_TW |
| dc.description.abstract | The plant develops various shapes of flowers in nature in order to attract pollinators for increasing the progenies of next generation. Asymmetry is one special trait for distinguishing different species of flowers. In previous research, CYC was discovered to be a major gene deciding the dorsal-ventral asymmetry of the flower in Antirrhinum. CYC is a TCP transcription factor and the BLAST result from petunia EST database identified two CYC-like DNA segments and applied to virus-induced gene silencing (VIGS) for petunia cultivar ‘Primtime Blue’. In the VIGS treated plants with reduced target gene expression based on the CYC-like segments, comparing to the control plant instead of showing different morphology of flower asymmetry, greater curvature of the petal lobe was observed. The full cDNA sequence of the silenced gene was obtained by RACE PCR and its derived amino acid sequence was used for alignment with other genes. The alignment result classified this gene into TCP gene family and the CIN subgroup, is closely related to its homologs CINCINNATA in snapdragon (Antirrihnum majas), TCP4 in Arabidopsis (Arabidopsis thaliana L. ) and an ortholog of LA in tomato (Solanum lycopersicon L.), thus named the gene as PhLA. Previous research about AmCIN, AtTCP4 and SlLA in either mutants or transformants showed defects in both leaves and flowers, however in petunia only exhibits abnormal growth in the flower when PhLA expression is down regulated. In this research, based on the phenotype observed in the VIGS treated plants, a number of techniques such as RC-PCR semi-quantification, in situ hybridization and scanning electronic microscopy (Hennig et al.) were used to analyze the role of PhLA in the development of petunia flowers. So far, it is indicated cells around the central vein area of petal lobes turned from conical shape to flatter and greater type which is parallel to the phenotype of petal lobes measured of greater maximum width, shorter minimum width and greater heights. Moreover, a miR319 recognition site near the 3’-UTR of PhLA was identified; previous research of miR319 in Arabidopsis and tomato verified that its expression affects the growth of both flowers and leaves by down regulating target genes. It is suspected that PhLA is regulated by miR319 and may be a deciding factor of flower morphology. In summary, it is expected to understand the evolutionary role of PhLA and the influence of regulatory mechanism of miR319 and PhLA to the flower curvature with the use of VIGS technique. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:16:53Z (GMT). No. of bitstreams: 1 ntu-100-R98621104-1.pdf: 5048294 bytes, checksum: c19910ba591c7820df7a7e5caf191849 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 謝辭 III
中文摘要 V Abstract VI Contents VIII Table contents XI Figure contents XII Appendix contents XIII Chapter 1 Introduction and literature review 14 1.1 Flower structure and genetically control 14 1.2 Flower morphological regulation by genes 15 1.2 General introduction of TCP genes 17 1.3 CINCINNATA of Antirrhinum 18 1.4 AtTCP4 of Arabidopsis 20 1.5 Lanceolate of Tomato 23 1.6 TRV based virus induced gene silencing (VIGS) technique 25 Chapter 2 Materials and methods 27 2.1 Plant material and growth condition 27 2.2 Virus-induced gene silencing (VIGS) of Petunia 27 2.2.1 Vectors for VIGS infection 27 2.2.2 RNA extraction 27 2.2.3 PhLA full length cDNA sequence obtained by 3’-RACE PCR 28 2.2.4 Phylogenetic analysis 28 2.2.5 Plasmid construction 29 2.2.6 Agrobacterium-mediated virus inoculation 29 2.3 Corolla morphological study 30 2.3.1 Corolla lobe measurement 30 2.3.2 Corolla tube measurement 30 2.3.3 Growth rate measurement of different regions of corolla 30 2.3.4 Area measurement of the petal lobe 31 2.4 Expressional pattern of PhLA of Corolla 31 2.4.1 DNAase treatment 32 2.4.2 First strand cDNA synthesis 32 2.4.3 Polymerase chain reaction (PCR) 32 2.4.4 in situ hybridization 33 2.4.4.1 Sample fixation and dehydration 33 2.4.4.2 Paraffin embedding 34 2.4.4.3 Probe designation, plasmid generation and plasmid linearization 34 2.4.4.4 in vitro transcription for DIG-labeled probes generation 35 2.4.4.5 DIG-labeled probes dot quantification 37 2.4.4.6 Section 39 2.4.4.7 Deparaffinization and rehydration of samples on slides 39 2.4.4.8 Pronase treatment, post-fixation and acetylation of samples on slides 39 2.4.4.9 Dehydration 40 2.4.4.10 Hybridization 40 2.4.4.11 Post-hybridization washing and RNase A treatment 41 2.4.4.12 Blocking and antibody reaction 42 2.4.4.13 Detection and mounting 43 2.5 RNA ligase-mediated rapid amplification of 5’ cDNA ends (RLM-RACE) 43 2.5.1 Dephosphorylate RNA and remove cap structure of the mRNA 43 2.5.2 RNA oligo ligated to full-length mRNA 44 2.5.3 RACE-ready cDNA synthesis 45 2.5.4 5’ RACE PCR 45 2.5.5 Gel-Purifying 46 2.5.6 Sequence cloning and analysis 47 2.6 Microscopy study 47 2.6.1 Observe corolla cells microscopy 47 2.6.2 Observed with Scanning electron microscope (Hennig et al.) 48 2.6.2.1 Sample fixation and dehydration 48 2.6.2.2 Critical point drying, sputter-coating and observation 48 Chapter 3 Results 49 3.1 Isolation of PhLA 49 3.3 The expression profiling of PhLA in petunia flower 53 3.4 The reduction of PhLA weaken conical cell around the central vein of petal lobes on the upper epidermal 55 3.5 The area and cell sizes of TRV chs and TRV chs/la-2 petal lobes 57 3.6 In situ hybridization of PhLA and miR319 in the floral bud 58 Chapter 4 Discussion 59 4.1 PhLA is important for flower development especially the lobe area 59 4.2 PhLA is important to the formation of conical cells around the central vein of petal lobes on the upper epidermal of Petunia 60 4.3 PhLA is one deciding factor of petunia flower curvature 63 4.4 PhLA regulates both the flower development and the leaf development? 65 4.5 The partial suppression of VIGS may not be responsible for the defect observed only in petals but not leaves in VIGS treated petunia 67 References 69 Appendix 95 | |
| dc.language.iso | en | |
| dc.subject | 花朵捲曲度 | zh_TW |
| dc.subject | TCP轉錄因子 | zh_TW |
| dc.subject | 病毒誘導基因靜默化技術 | zh_TW |
| dc.subject | miR319 | en |
| dc.subject | flower curvature | en |
| dc.subject | virus-induced gene silencing (VIGS) | en |
| dc.subject | PhLA | en |
| dc.subject | TCP transcription factor | en |
| dc.title | 以病毒誘導基因靜默技術探討PhLA基因在矮牽牛花型態之影響 | zh_TW |
| dc.title | Using Virus-inducing gene silencing (VIGS) technique to study the function of PhLA in Petunia flowers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張孟基(Men-Chi Chang) | |
| dc.contributor.oralexamcommittee | 王俊能(Chun-Neng Wang),張松彬(Song-Bin Chang) | |
| dc.subject.keyword | TCP轉錄因子,病毒誘導基因靜默化技術,花朵捲曲度, | zh_TW |
| dc.subject.keyword | TCP transcription factor,PhLA,miR319,virus-induced gene silencing (VIGS),flower curvature, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
