Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorYa-Wen Hsuen
dc.contributor.author許雅雯zh_TW
dc.date.accessioned2021-06-13T04:16:25Z-
dc.date.available2006-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation[1]Baes, C.F., Mesmer, R.E., The hydrolysis of cations, John Wiley & sins, New York (1976).
[2]Barceloux, D. G., “Chromium,” Clinical Toxicology, 37, 173-194 (1999).
[3]Bartlett, R. L ., Kimble, J. M., “Behavior of Chromium in soils: Ⅱ. Hexavalent forms.” J. Environ. Qual., 5, 383~386 (1976a.).
[4]Blowes D. W., Pratt A.R., Ptacek CJ. ”Products of Chromate Reduction on Proposed Subsurface Remediation Material.” Environ Sci Technol., 31, 2492-2498 (1997).
[5]Bransfied S.J., Cwiertny D.M., Roberts A.L., and Fairbrother D.H., “”Influence of Copper Loading and Surface Converges on the Reactivity of Granular Iron toward 1,1,1-Trichloroethane.“Environ Sci Technol., 40, 1485-1490 (2006).
[6]Buerge, I. J., Hug, S.J., ”Kinetics and pH Dependence of Chromium (Ⅵ) Reduction by Iron (Ⅱ).” Environ. Sci. Technol., 31, 1426-1432 (1997).
[7]Chen, C.W., Tseng, S.C., Wu, Y.T., Huang, J., Chen-Yang, Y.W., “Modification of the surface of bi-axially expanded PTFE by acrylic acid plasma polymerization.”
[8]Cheng, S.F., Wu, S.C., “The Enhance Methods for the Degradation of TCE by Zero-valent Metals.” Chemosphere, 41, 1263-1270 (2000).
[9]Eary LE, Rai D. “ Chromate Removal from Aqueous Wastes by Reduction with Ferrous Ion.” Environ Sci Technol , 22, 972-977 (1988)。
[10]Fendorf, S.E., ”Surface Reactions of Chromium in Soils and Waters.” Geoderna, 37, 55-71(1995).
[11]Fruchter, J., “In Situ Treatment of Chromium Contaminated Groundwater.” Environ. Sci. Technol.,A-page, 35, 465A-472A (2002).
[12]Gotpagar J., Lyuksyutov S., Cohn E., Bhattacharyya D., “Reductive dechlorination of trichloroethylene with zero-valent iron: Surface profiling microscopy and rate enhancement studies.” Langmuir, 15, 8412-8420 (1999).
[13]Hack H.P., ”ASTM special technical publication;978: Galvanic corrosion.” Philadelphia, PA:ASTM, c1988.
[14]Hu Jing, Chen Guohua, Lo M.C., “Removal and recovery of Cr(Ⅵ) from wastewater by maghemite nanoparticles.” Water Research, 39, 4528-4536 (2005).
[15]Kikuchi T., Aramaki K., “The inhibition effects of anion and cation inhibitors on corrosion of iron in an anhydrous acetonitrile solution of FeCl3.” Corrosion, 42, 817-829 (2000).
[16]Lewera A., Zhou W.P., Vericat C., Chung J.H., Haasch R., Wieckowski A., Bagus P.S., “XPS and Reactivity Study of Bimetallic Nanoparticles Containing Ru and Pt Supported on A Gold Disk.” Electrochimica Acta, 51, 3950-3956(2006).
[17]Lin, K.S., Chang, K.C., Liu, Y.J., Chuang, T.D., “Decontamination of Cr-Species in Groundwater by Adsorption Reduction onto Fe(0) Nanopowders.” J. Chin. Colloid & Interface Soc., 27, 33-42 (2005).
[18]Lo M.C., LAM S.C., LAI C.K., ”Hardness and Carbonate Effects on the Reactivity of Zero-valent Iron for Cr(Ⅵ) Removal.” Water Research, 40, 595-605(2006).
[19]Liou Y. H., LO S.L., Lin C.J., Hu C.Y., Kuan W.H., Weng S.C.., “Methods for Accelerating Nitrate Reducing Using Zerovalent Iron at Near-Neutral pH: Effects of H2-Reducing Pretreatment and Copper Deposition.” Environ. Sci. Technol., 39, 9643-9648 (2005).
[20]Martinez, S.A., Rodriguez, M.G., Barrera, C., “A Kinetics model that describles removal of chromium Ⅵ from rinsing waters of the metak finishing industry by electrochemical processes.” Water Science and Technology, 42, 55-61 (2000).
[21]Meltas, N., and Farrell, J., “Understanding chromate reaction kinetics with corroding iron media using tafel analysis and electrochemical impedance spectroscopy.” Environ. Sci. Technol., 36, 5476-5482 (2002).
[22]Melitas , N., Ouatfa C. M. and Farrell, J., “Kinetics of Soluble Chromium Removal from Contaminated Water by Zerovalent Iron Media: Corrosion inhibition and passive oxide effects.” Environ. Sci. Technol., 35, 3948-3953 (2001).
[23]Moore, A.M., Leon, C.H.D., Young, T.M., “Rate and extent of aqueous perchlorate removal by iron surfaces.” Environ. Sci. Technol., 37, 3189-3198 (2003).
[24]Nieboer, E., Jusys, A.A., “Biologic chemistry of chromium.” John Wiley and Sons., New York (1988).
[25]Nikos Melitas, Ouatfa Chuffe-Moscoso, James Farrell., ”Kinetics of Soluble Chromium Removal from Contaminated Water by Zerovalent Iron Media: Corrosion Inhibition and Passive Oxide Effects.” Environ. Sci. Technol., 35, 3948-3953 (2001).
[26]Ponder, S.M., Darad, J.G., Mallouk, T.E., “Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron.” Environ. Sci. Technol., 34, 2564-2569 (2000).
[27]Powell R.M., Puls R.W., Hightower S.K., Sabatini D.A., “Coupled iron corrosion and chromate reduction:mechanisms for subsurface remediation.” Environ. Sci. Technol., 29, 1913-1922 (1995).
[28]Pratt AR, Blowes DW, Ptacek CJ. ”Products of chromate reduction on proposed subsurface remediation material.” Environ. Sci. Technol, 31, 2492-2498 (1997)。
[29]Ruiz N., Seal S., Reinhart D., “Surface Chemical reactivity in selected zero-valent iron samples used in groundwater remediation.” J. Hazard. Mater., 80, 107-117 (2000).
[30]Su, C., Puls R.W., “Kinetics of trichloroethylene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products.” Environ. Sci. Technol., 33, 163-168 (1999).
[31]Su, C., Puls R.W., “Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride.” Environ. Sci. Technol., 35, 4562-4568 (2001).
[32]Sweeny K.H., Fischer J.R., “Reductive degradation of halogenated pesticides.” U.S. Patent, 4, 382, 865 (1972).
[33]Wang, C.B., Zhang, W.X., “Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs.” Environ. Sci. Technol., 31, 2154-2156 (1997).
[34]Zayed, A., Lytle C.M., Qian J.H., Terry N., “Chromium accumulation, translocation and chemical speciation in vegetable crops.” Planta, 206, 293-299 (1998).
[35]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D.,”Handbook of X-ray Photoelectron Spectroscopy.”
[36]丁健源,「重金屬鉻之土壤污染及其溶質吸附移動模擬研究」,碩士論文,國立台灣大學農業工程研究所,1987。
[37]劉景文,「零價鐵去除水中六價鉻之研究」,碩士論文,國立台灣大學環境工程研究所,2005。
[38]翁士奇,「奈米級零價鐵及銅鐵雙金屬還原水中硝酸鹽之研究」,碩士論文,國立台灣大學環境工程研究所,2005。
[39]胡景堯,「電膠羽浮除法去除廢水中氟離子之研究」,博士論文,國立台灣大學環境工程研究所,2005。
[40]余佩芳,「評估選擇性離子交換樹脂法抽出土壤有效六價鉻之適用性」,碩士論文,國立台灣大學農業化學研究所,2002。
[41]吳欣蓉,「鉻污染之土壤及地下水現地整治(上)(下)」,經濟部工業局
[42]吳奕德,「利用真空濕式反應式進行即時就地膠原蛋白固定之研究」,碩士論文,私立中原大學醫學工程研究所,2002。
[43]王明誠,「利用同步輻射X光光電子能譜研究電漿誘導生成官能基對生物單體固定之模式」,博士論文,私立中原大學醫學工程研究所,2003。
[44]王明光,王敏昭,「實用儀器分析」,國立編譯館,2003。
[45]田中正三郎,賴耿陽譯,「電化學實驗」,富漢出版,1988。
[46]謝淵清,「電化學反應程序」,徐氏基金會出版,1983。
[47]國科會南部貴重儀器使用中心,「第五屆貴重儀器研討會」,1987。
[48]行政院勞委會勞工安全衛生研究所,「勞工鉻暴露生物偵測標準參考方法之建立」,1996。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32822-
dc.description.abstract鉻酸鹽通常被使用或產生於工業製程之中,舉凡電鍍、冶煉、冷卻水等,因此在工業區附近的地下水體之中,鉻成為常見的汙染物之一。
鉻酸鹽在環境中屬活潑、容易發生氧化還原反應之金屬,其普遍存在三價或六價的型態,這兩種氧化態彼此之間能夠互相轉換。然而六價鉻毒性約為三價鉻之1000倍,大量攝取六價鉻的化合物將引起嘔吐、腹痛、尿毒症、甚至有致癌性,因此理解地下水體中該潛在危險元素之命運(宿命)與其反應機制是必要的。
近年來,零價鐵還原技術已被廣泛地應用在整治地下水中可還原性污染物上,鉻即為其中一種。為降低六價鉻對人體及生態系統之危害,場址整治是必需的。因此本研究之主要研究目標為探討零價鐵以及雙金屬系統對六價鉻還原反應、去除效率和電化學腐蝕機制。並且,以批次實驗個別探討五種陰離子(氯離子、硫酸根、矽酸根、磷酸根、過氯酸根),對六價鉻去除之影響。更進一步探討零價鐵、雙金屬微粒及所吸附鉻離子之成分與氧化價數。
研究結果顯示以雙金屬載體來進行實驗並且載體經氣相還原之前處理程序,將有助於反應持續進行,使反應效率提升。此外水體中存在不同的共存陰離子會對六價鉻還原反應造成干擾,其中氯離子、硫酸根離子、過氯酸根離子在本研究中均能幫助反應進行,矽酸根離子則對系統有極大之干擾,抑制反應的持續進行。
在分析塔佛電化學反應時,發現隨著負載第二金屬的比例增加,腐蝕電流上升,去除效率提高。可以知道鉻的去除效率與電化學的腐蝕電流相關。
接著進行貴重儀器的檢測,經由照SEM會發現,有前處理過後的商用鐵粉表面較為光滑,而負載第二金屬時也會比沒前處理過負載金屬的表面來的分布均勻,更可以驗證效果的提升。此外,經由XPSpeak曲線配湊之結果,分析目標元素的價數分布情形隨縱深深度而異,有以下趨勢:Fe2p3/2由表層0 nm至50 nm深,由Fe(Ⅲ)逐漸轉為Fe(Ⅱ)再轉為Fe(0);Cu2p3/2由表層0 nm至50 nm深,由Cu(Ⅱ)逐漸轉為Cu(Ⅰ)、Cu(0);縱深0 nm至50 nm,當Cr2p3/2訊號存在,其均是Cr(Ⅲ)型態存在。
zh_TW
dc.description.abstractChromates are often used or generated by a number of industrial process including electroplating, tanning, cooling with water, etc. so that chromium pollutants are often found to exist in groundwater in industrial region. Chromium is a redox active metal that persists as either Cr(Ⅲ) or Cr(Ⅵ) in the environment. These two oxidation states have opposing toxicities and mobilities. Cr(Ⅲ) is rather benign and immobile in soils while Cr(Ⅵ) is toxic, corrosive, readily transported, and a potential carcinogen. It is therefore essential to find out Cr reactions and mechanisms in groundwater to predict and understand the fate of such potentially hazardous element.
Remediation of groundwater contaminated with Cr species by using zero-valent iron (Fe0) has received considerable attention in recent years. Site remediation is necessarily required in order to reduce the risk to humans and ecosystems. Therefore, the main objectives of the study is to investigate the reduction, removal efficiency and electrochemical corrosion mechanisms of Cr (III, VI) aqueous solutions on the zero-valent iron and bi-metal (bi-metal)systems. Further more, to find out the composition and oxidize prices of the chromium absorbed, zero-valent iron and bi-metal particles.
The results show that bi-metal systems could effectively promote chromium removal and the step of pre-treated method leads to higher efficiency. And the presence of chloride, sulfate, and perchloride ions can increase the rate of chromium removal while silicate interfered the reactions in zero-valent iron and bi-metal systems.
It also shows that the corrosion current rise while bi-metal coating scale increase in Tafel electrochemical analysis. It is found that chromium removal efficiency is related to corrosion current. Carrying on the measuring of the valuable instrument, it is found that the surface of pre-treated iron powder is smoother, and the distribution of the coating metal on the surface of iron powder is comparatively even via SEM. This would verify the improvement of the chromium removal efficiency in the study. In addition, according to the XPSpeak fitting results, the oxidize prices of the goal elements vary with the depth profile. It reveals that Fe2p3 is trivalence, duad, zero-valent, and Cu2p3 is duad, monovalence, zero-valent from the Surface layer (0 nm) to bottom layer(50 nm).
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:16:25Z (GMT). No. of bitstreams: 1
ntu-95-R93541128-1.pdf: 7266526 bytes, checksum: fb3425d171f96ed55bb0e435475e3404 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要 II
Abstract IV
目錄 VI
表目錄 X
圖目錄 XII
第一章 緒論 1
1-1 研究源起 1
1-2 研究目的與內容 2
第二章 文獻回顧 3
2-1 鉻的特性 3
2-1-1 鉻的物理化學特性 3
2-1-2 鉻的型態與毒理特性 3
2-1-3 鉻之用途與汙染源 6
2-2 鉻的去除方法 7
2-2-1 還原沉降法 7
2-2-2 離子交換樹脂法 7
2-2-3 電化學還原法 8
2-3 商用鐵粉-零價鐵去除鉻污染物技術 9
2-3-1 處理技術之緣起 9
2-3-2 零價鐵還原六價鉻機制與動力模式之探討 9
2-3-3 影響六價鉻去除之因子 11
2-3-4 零價鐵處理技術面臨的缺點 15
2-4 雙金屬去除鉻污染物技術 16
2-4-1 複合金屬(bimetallic)對反應速率之影響 16
2-4-2 複合金屬之相關研究 17
2-4-3 腐蝕理論 18
第三章 研究方法與實驗流程 23
3-1 整體研究架構與實驗流程 23
3-2 批次實驗 25
3-2-1 負載金屬種類實驗 25
3-2-2 前處理效應實驗 27
3-2-3 水中共存陰離子效應 29
3-2-4 產物分析 30
3-3 電化學分析實驗 32
3-4 表面分析 33
3-4-1 電子顯微鏡分析(SEM&EDS) 33
3-4-2 比表面積測定法(BET) 34
3-4-3 X射線光電子能譜儀(XPS) 35
3-5 實驗設備器材及藥品 39
第四章 實驗結果與討論 47
4-1雙金屬系統之動力實驗 47
4-1-1負載金屬種類實驗之動力實驗 49
4-1-2 經前處理程序之雙金屬系統動力實驗 52
4-1-3 水中共存陰離子對六價鉻去除影響之動力實驗 56
4-1-4前處理與否及再生處理比較 61
4-1-5改變初始濃度反應動力比較 64
4-2 塔佛分析腐蝕效應之影響 65
4-3表面分析之結果 70
4-3-1 掃描式電子顯微鏡(SEM) 70
4-3-2 XPS分析 78
4-3-3 BET比表面積分析 93
第五章 結論與建議 99
5-1 結論 99
5-2 建議 102
參考文獻 103
附錄 A:水質對六價鉻去除之影響實驗數據 - 1 -
附錄 B:XPS分析-依束縛能查表對照各元素之價數、組態- 11 -
附錄 C:實驗後之鐵粉(Fe)-XPS peak fitting analysis- 13 -
附錄 D:前處理過之鐵粉(Fe*)實驗後-XPS peak fitting analysis - 16 -
附錄 E:銅鐵雙金屬(Cu/Fe-5%)實驗後-XPS peak fitting analysis - 19 -
附錄 F:前處理過之銅鐵雙金屬(Cu/Fe*-5%)實驗後-XPS peak fitting analysis - 23 -
附錄 G:反應後四種載體(Fe、Fe*、Cu/Fe、Cu/Fe*)表層0 nm之XPS能譜與XPS peak fitting,掃描元素:C1s - 27 -
附錄 H:反應後四種載體(Fe、Fe*、Cu/Fe、Cu/Fe*)之縱深分析,掃描元素:C1s - 28 -
附錄 I:反應後四種載體(Fe、Fe*、Cu/Fe、Cu/Fe*)依縱深每層各元素分佈比例 - 30 -
附錄 J:BET分析數據 - 32 -
dc.language.isozh-TW
dc.subject零價金屬鐵zh_TW
dc.subject六價鉻zh_TW
dc.subjectXPS曲線配湊zh_TW
dc.subject雙金屬zh_TW
dc.subjectXPSpeak fittingen
dc.subjectchromiumen
dc.subjectbi-metal system.en
dc.subjectzero-valent ironen
dc.title以鐵負載銅及貴金屬微粒還原水中鉻酸鹽之研究zh_TW
dc.titleReduction of Chromate by Bimetallic Iron Particlesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李公哲,劉雅瑄
dc.subject.keyword六價鉻,XPS曲線配湊,零價金屬鐵,雙金屬,zh_TW
dc.subject.keywordchromium,XPSpeak fitting,zero-valent iron,bi-metal system.,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
7.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved