請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32792完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Chuan-Wen Lai | en |
| dc.contributor.author | 賴傳文 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:15:41Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | [1] I. Haritaoglu, D. Harwood, and L. S. Davis, 'W4: real-time surveillance of people and their activities,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 809-830, 2000.
[2] T. H. Chang and S. Gong, 'Tracking multiple people with a multi-camera system,' in IEEE Workshop on Multi-Object Tracking, 2001, pp. 19-26. [3] V. I. Pavlovic, R. Sharma, and T. S. Huang, 'Visual interpretation of hand gestures for human-computer interaction: a review,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, pp. 677-695, 1997. [4] H. Weiming, T. Tieniu, W. Liang, and S. Maybank, 'A survey on visual surveillance of object motion and behaviors,' IEEE Transactions on Systems, Man and Cybernetics, vol. 34, pp. 334-352, 2004. [5] H. Min, H. Weiming, and T. Tieniu, 'Tracking people through occlusions,' presented at 17th International Conference on Pattern Recognition, 2004. [6] S. S. Blackman, 'Multiple hypothesis tracking for multiple target tracking,' IEEE Aerospace and Electronic Systems Magazine, vol. 19, pp. 5-18, 2004. [7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, 'A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,' IEEE Transactions on Signal Processing, vol. 50, pp. 174-188, 2002. [8] W. Yuanxin, H. Xiaoping, D. Hu, and W. Meiping, 'Comments on 'Gaussian particle filtering',' IEEE Transactions on Signal Processing, vol. 53, pp. 3350-3351, 2005. [9] Y. Barshalom and E. Tse, 'Tracking in a Cluttered Environment with Probabilistic Data Association,' Automatica, vol. 11, pp. 451-460, 1975. [10] T. Fortmann, Y. Bar-Shalom, and M. Scheffe, 'Sonar tracking of multiple targets using joint probabilistic data association,' IEEE Journal of Oceanic Engineering, vol. 8, pp. 173-184, 1983. [11] M. Isard and A. Blake, 'CONDENSATION - Conditional density propagation for visual tracking,' International Journal of Computer Vision, vol. 29, pp. 5-28, 1998. [12] M. Isard and A. Blake, 'Icondensation: Unifying low level and high level tracking in a stochastic framework ' presented at 5th European Conf. Computer Vision, Freiburg, Germany, 1998. [13] C. Cheng and R. Ansari, 'Kernel particle filter for visual tracking,' IEEE Transation on Signal Processing Letters, vol. 12, pp. 242-245, 2005. [14] M. Bray, E. Koller-Meier, and L. Van Gool, 'Smart particle filtering for 3D hand tracking,' presented at Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. [15] H. Bohyung, D. Comaniciu, Z. Ying, and L. Davis, 'Incremental density approximation and kernel-based Bayesian filtering for object tracking,' presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. [16] E. Baziw, 'Real-time seismic signal enhancement utilizing a hybrid Rao-Blackwellized particle filter and hidden Markov model filter,' IEEE Aerospace and Electronic Systems Magazine, vol. 2, pp. 418-422, 2005. [17] C. Rasmussen and G. D. Hager, 'Probabilistic data association methods for tracking complex visual objects,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 560-576, 2001. [18] L. R. Rabiner, 'A tutorial on hidden Markov models and selected applications in speech recognition,' Proceedings of the IEEE, vol. 77, pp. 257-286, 1989. [19] Y.-S. Cheng, 'Multiple People Visual Tracking in a Multi-Camera System for Cluttered Environment,' in Department of Electrical Engineering, Master Thesis, National Taiwan University, 2005. [20] K. Zia, T. Balch, and F. Dellaert, 'MCMC-based particle filtering for tracking a variable number of interacting targets,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1805-1819, 2005. [21] C. Cheng, R. Ansari, and A. Khokhar, 'Multiple object tracking with kernel particle filter,' presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. [22] Z. Chen, 'Bayesian filtering: From kalman filters to particle filters, and beyond,' on line: http://soma.crl.mcmaster.ca/#zhechen/homepage.htm, 2003. [23] R. T. Bayes, 'Essay toward solving a problem in the doctrine of chances,' Philosophical Transactions of the Royal Society London, vol. 53, pp. 370--418, 1763. [24] S. Ghahramani, Fundamentals of Probability, 2 ed: Prentice-Hall, Inc., 2000. [25] F. Daum, 'Nonlinear filters: beyond the Kalman filter,' IEEE Aerospace and Electronic Systems Magazine, vol. 20, pp. 57-69, 2005. [26] J. Carpenter, P. Clifford, and P. Fearnhead, 'Improved particle filter for nonlinear problems,' IEE Proceedings-Radar Sonar and Navigation, vol. 146, pp. 2-7, 1999. [27] Y. Boers and J. N. Driessen, 'Interacting multiple model particle filter,' IEE Proceedings-Radar Sonar and Navigation, vol. 150, pp. 344-349, 2003. [28] A. Doucet, 'On sequential Monte Carlo methods for Bayesian filtering,' Department of Engineering, University of Cambridge, Technical Report, 1998. [29] J. Liu and R. Chen, 'Sequential Monte Carlo Methods for Dynamical Systems,' Journal of the American Statistical Association, vol. 93, pp. 1032-1044, 1998. [30] N. J. Gordon, 'Bayesian methods for tracking,' Ph.D. Thesis, Imperial College, Uniersity London, 1994. [31] C. Yizong, 'Mean shift, mode seeking, and clustering,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 790-799, 1995. [32] K. Fukunaga and L. Hostetler, 'The estimation of the gradient of a density function, with applications in pattern recognition,' IEEE Transactions on Information Theory, vol. 21, pp. 32-40, 1975. [33] S. Chunhua, M. J. Brooks, and A. van den Hengel, 'Fast global kernel density mode seeking with application to localization and tracking,' presented at IEEE International Conference on Computer Vision, 2005. [34] J. MacCormick and A. Blake, 'A probabilistic exclusion principle for tracking multiple objects,' International Journal of Computer Vision, vol. 39, pp. 57-71, 2000. [35] V. Ba-Ngu, S. Singh, and A. Doucet, 'Sequential monte carlo implementation of the phd filter for multi-target tracking,' presented at Sixth International Conference of Information Fusion, 2003. [36] G. R. Mark, J. G. Neil, and M. Simon, 'Particle-based track-before-detect in Rayleigh noise,' presented at SPIE Signal and Data Processing of Small Targets, 2004. [37] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G. Lowe, 'A boosted particle filter: Multitarget detection and tracking,' European Conference on Computer Vision, vol. 3021, pp. 28-39, 2004. [38] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers, 'Tracking multiple moving objects with a mobile robot,' presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. [39] C. Rasmussen, 'Joint likelihood methods for mitigating visual tracking disturbances,' presented at IEEE Workshop on Multi-Object Tracking, 2001. [40] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, 'Comparing images using the Hausdorff distance,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp. 850-863, 1993. [41] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice. London: Chapman & Hall, 1996. [42] B. Walsh, 'Markov Chain Monte Carlo and Gibbs Sampling,' in Lecture Note for Biological Statistics: University of Arizona Department of Ecology and Evolutionary Biology, 2004. [43] N. G. P. Bradley P. Carlin, David S. Stoffer, 'A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling,' Journal of the American Statistical Association, vol. 87, pp. 493-500, 1992. [44] 'Markov chain,' Wikipedia, on line: http://en.wikipedia.org/wiki/Markov_chain. [45] S. M. Ross, Introduction to probability and statistics for engineers and scientists. New York: Wiley, 1987. [46] N. Drakos, 'Markov Chain Monte Carlo,' Computer Based Learning Unit, University of Leeds, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32792 | - |
| dc.description.abstract | 在影像追蹤的應用當中,多目標物追蹤系統(MTT System)常會遇到一個問題,即移動的目標物無可避免地會在影像當中彼此交錯,因此對個別目標物作外觀的量測過程中便產生了目標物間的相依性。在本論文當中,我們提出了使用結合影像相似度(Joint Image Likelihood)以及對目標物距離相機的相對深度層次(Depth Level)的假設來分辨交錯中的目標物,實驗證明即使目標物的外觀相似仍可維持目標追蹤。為了同時達到多目標物的偵測及追蹤,我們將SIR粒子濾波器(Particle Filter)延伸為分散式SIR粒子濾波器;然而為了增加系統在處理交錯目標物的分辨時的效能,我們採用以馬可夫鏈蒙地卡羅(Markov Chain Monte Carlo)為基礎之粒子濾波器,此方法可以有效率地解決目標物交錯時的高維度狀態估測。本論文另一個重點在於提出主動相機的控制策略,使該系統可自動移動相機視角使得監視範圍中能包含最多的資訊量。最後,透過實驗來驗證此即時系統整體的效能及可靠性。 | zh_TW |
| dc.description.abstract | In visual tracking, multi-target tracking (MTT) systems encounter the problem that unavoidably moving targets may occlude each other and the measurement process of each target becomes dependent. We construct a tracking system with considering joint image likelihood to recognize targets, even though the appearances of the target are identical. Also, the multiple hypotheses of the targets’ depth level are utilized for occlusion handling. In order to enhance system performance, we extend the sampling importance resampling (SIR) particle filter with the separated importance functions for tracking each target and detection. Furthermore, when targets occlude together, the state vector of these targets is transferred into a joint state vector, and the MCMC (Markov Chain Monte Carlo) based particle filter is then proposed for efficient sampling in the high-dimensional joint state during occlusion. Furthermore, a control strategy for the active camera is proposed in order to move the camera such that the surveillance area will contain the most information. The overall performance is validated in the experiments and shows the robustness with real-time tracking. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:15:41Z (GMT). No. of bitstreams: 1 ntu-95-R93921010-1.pdf: 3665966 bytes, checksum: 27e1c5b5fc7751bea0344d3384a53745 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Table of Contents III List of Figures V Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Brief Literature Review 2 1.3. Contribution 4 1.4. Thesis Organization 5 Chapter 2 Preliminaries 7 2.1. Bayesian Filter 7 2.1.1. Bayes’ Theorem 7 2.1.2. Generic Stochastic Filter from Bayesian Perspective 8 2.1.3. Kalman Filter 12 2.2. Particle Filter 16 2.2.1. Monte Carlo Integration 17 2.2.2. Sequential Importance Sampling (SIS) Particle Filter 18 2.2.3. Resampling 20 2.2.4. Bootstrap/Sampling Importance Resampling (SIR) Particle Filter 22 2.3. Gradient Ascent 23 2.3.1. Kernel Density Estimation 24 2.3.2. Mean Shift Algorithm 27 Chapter 3 Modified Multi-Target Tracking Algorithm 33 3.1. Single-Target Tracking 33 3.2. JVPDA Filter for Multi-Target Tracking 37 3.2.1. Review of Conventional JVPDA Filter 38 3.2.2. Image Feature Simlarity 44 3.3. Visual Tracking with Occlusion Handling 45 3.4. Multi-Target Tracking Based on Modified Particle Filter 49 3.4.1. Importance Sampling with Separated Importance Functions 51 3.5. Occlusion Handling 52 3.5.1. Estimation Based on Joint Image Likelihood 53 3.5.2. Multiple Hypotheses with Temporal Consideration 54 3.6. MCMC-based Particle Filter 58 3.6.1. Impoverishment Phenomenon in SIRPF 59 3.6.2. Properties of Markov Chains 60 3.6.3. Markov Chains in Discrete State Space 62 3.6.4. Metropolis-Hastings Algorithm 64 3.6.5. Definition of Ergodicity 66 3.6.6. MCMC-based Particle Filter Algorithm 68 Chapter 4 Implementation 71 4.1. Measurements 71 4.1.1. Outline Likelihood 71 4.1.2. Appearance Likelihood 72 4.1.3. Color Distribution Likelihood 73 4.1.4. Outer Color Likelihood 74 4.2. Implementation of Single-Target Tracking System 75 4.3. Implementation of Multi-Target Tracking System 76 4.4. Active Camera Control 80 4.4.1. Coordinate Transformation 80 4.4.2. Control Strategy 82 Chapter 5 Experiment Results 85 5.1. Results of Single-Target Tracking System 85 5.2. Results of the MMT System using Modified Particle Filter 85 5.3. Results of MMT system using MCMC-based particle filter 89 5.4. Results of Active Camera 92 Chapter 6 Conclusion and Future Work 95 6.1. Conclusion 95 6.2. Future Work 96 References 97 | |
| dc.language.iso | en | |
| dc.subject | 馬可夫鏈蒙地卡羅 | zh_TW |
| dc.subject | 主動相機 | zh_TW |
| dc.subject | 結合影像相似度 | zh_TW |
| dc.subject | 粒子濾波器 | zh_TW |
| dc.subject | 影像追蹤 | zh_TW |
| dc.subject | 多目標物追蹤 | zh_TW |
| dc.subject | Active Camera | en |
| dc.subject | Markov Chain Monte Carlo | en |
| dc.subject | Joint Image Likelihood | en |
| dc.subject | Sequential Monte Carlo | en |
| dc.subject | Visual Tracking | en |
| dc.subject | Multi-Target Tracking | en |
| dc.subject | Particle Filter | en |
| dc.title | 具遮蔽處理之貝氏濾波法實現主動相機平台之多目標物影像追蹤 | zh_TW |
| dc.title | Multi-Target Visual Tracking by Bayesian Filtering with Occlusion Handling on an Active Camera Platform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪一平(Yi-Ping Hung),傅楸善(Chiou-Shann Fuh),胡竹生(Jwu-Sheng Hu),簡忠漢 | |
| dc.subject.keyword | 多目標物追蹤,影像追蹤,馬可夫鏈蒙地卡羅,粒子濾波器,結合影像相似度,主動相機, | zh_TW |
| dc.subject.keyword | Multi-Target Tracking,Visual Tracking,Markov Chain Monte Carlo,Particle Filter,Sequential Monte Carlo,Joint Image Likelihood,Active Camera, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
