Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32769
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峰輝
dc.contributor.authorTzoo-Shing Yehen
dc.contributor.author葉佐興zh_TW
dc.date.accessioned2021-06-13T04:15:10Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation【1】Division of Plastic Surgery, The University of California, Irvine, Orange, CA 92868; THE ANATOMICAL RECORD 263:396–404 (2001)
【2】Materials for Peripheral Nerve Regeneration Macromol. Biosci. 2006,6, 13-26
【3】陳金山,徐淑媛 基礎人體解剖學與生理學
【4】Arthur C. Guyton,john E. Hall. Textbook of medical Physiology.9th edition.
【5】Seddon HJ: Three types of nerve injury. Brain 66:237–288,1943
【6】Sunderland S: Nerves and Nerve Injuries, ed 2. London:Churchill Livingston, 1978
【7】Jabaley ME, Wallace WH, Heckler FR: Internal topography of major nerves of the forearm and hand: A current view. J Hand Surg 5:1-18, 1980
【8】Mackinnon SE,Dellon AL.Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plat Reconstr Surg 1990;85(3):419-424
【9】Peter J. Evans,Susan E. Mackinnon,Allan D.O. Levi, Judith A. Wade, Daniel A.Hunter, Yasushi Nakao, Rajiv Midha. Cold preserved nerve allograft: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle and Nerve 1998;21(11):1507-1522
【10】Zhong SZ, Wang GY, He YS, et al: The relationship between structural features of peripheral nerves and suture methods for nerve repair. Microsurgery 9:181-185, 1988
【11】Werrbach-Perez K, Perez-Polo JR. De novo synthesis of NGF subunits in S-180 mouse sarcoma cell line. Neurochem Res 1987;12(10):875-883
【12】P. P. DeLuca, R. C. Mehta, A.G. Hausberger, and B. C. Thanoo,in:Polymeric Delivery Systems-properties and applications, ACS, Washington DC,1993,pp.53-79
【13】R. A. Muzzarelli and R. Rocchetti, Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrumphotometry. Carbohydr. Polym. 1985,5:461
【14】L. J. Filar and M. G. Wirick, Bulk and solution properties of chitosan.p:169 in:Proceedings of the 1st Int. conf. On Chitin/Chitosan. 1978.
【15】The effect of irradiation modification and RGD sequence adsorption on the respone of human osteoblasts to polycaprolactone Biomaterials 26 (2005) 4793-4804
【16】J. C. Price,in: Handbook of Pharmaceutical Excipients,APHA and Pharm.Press, 1994,pp.199-201
【17】John C. Middleton and Arthur J. Tipton: Synthetic Biodegradable Polymers as Medical Devices Medical Plastics and Biomaterials Magazine MPB Article Index
【18】Wang KK, Costas PD, Bryan DJ. Inside-out vein graft promotes improved nerve regeneration in rats.Microsurgery1993;14:608-618
【19】Jamal Mohammad,Jay Shenaq, Eric Rabinovsky,Saleh Shenaq.Modulation of peripheral nerve regeneration.Plast Reconstr Surg2000;105:660-666
【20】Carole A. Heath, Gregory E. The development of bioartificial nerve grafts for peripheral-nerve regeneration. Trends Biotechnol1998;16(4):163-178
【21】Michel Merle,Complications from silicon-polymer intubulation of nerve.Microsurgery1989;10(2):130-133
【22】Mackinnon SE, Dellon AL. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg 1990;85:419-424
【23】B. D. Ratner, A. S. Hoffman, F. J. Schoen. Biomaterials Science: An introduction to materials in medicine.Academic Press 1996.
【24】Nicole J. Einerson, Kelly R. Stevens.Synthesis and physicochemical analysis of gelatin-based hydrogel for drug carrier matrices. Biomaterials 2002;24:509-523.
【25】Koichi Kato, Emiko Uchida, En-Tang Kang, Yoshikimi Uyama, yoshito Ikada, 〝Polymer surface with graft chains,〞Progress in Polymer Science, vol. 28, 2003 , pp. 209-259.
【26】Chi-Ming Chan Polymer Surface Modification and Characterization
【27】J. Heitz, H. Niino, and A. Yabe, Appl. Phys. Lett., 68, 2648 (1996)
【28】Bill George, Peter Mclntyre. Infrared Spectroscopy. John Wiley and Sons.
【29】SKOOG PRINCIPLES OF Instrumental Analysis FIFTH EDITION
【30】李文福 譯著 工程材料的本質與性質 國立編譯館出版
【31】K.S. Tiaw,S.W. Goh Laser suface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications Biomaterials 26 (2005) 763-769
【32】Ziyuan Cheng, Swee-Hin Teoh Surface modification of ultra thin poly(ε-caprolactone) films using acrylic acid and collagen Biomaterials 25 (2004) 1991-2001
【33】Z.G. Tang, R.A. BlackSurface properties and biocompatibility of solvent-cast poly(ε-caprolactone) films Biomaterials 25 (2004) 4741-4748
【34】Matthew D. Bender, Jennifer M. Bennett Multi-channeled biodegradable polymer/CultiSpher composite nerve guides Biomaterials 25 (2004) 1269-1278
【35】M.C. Serrano, R. Pagani, In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts Biomaterials 25 (2004) 5603-5611
【36】Tim Mosmann. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. Journal of Immunological Methods 1983;65(1-2):55-63.
【37】Eugene Khor. Methods for the treatment of collagenous tissues for bioprostheses (review). Biomaterials 1997;18:95-105.
【38】Frederick L. Hall, Paul Fernyhough, Douglas N. Ishii, P. Richard Vulliet.Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells bysphingosine, an inhibitor of protein kinase C. Journal of Biological Chemistry 1988;263(9):4460–4466.
【39】Xiaoyun Xu, Hanry Yu, Shujun Gao, Hai-Quan Mao, Kam W. Leong, Shu Wang. Polyphosphoester microspheres for sustained release of biologically active nerve growth factor. Biomaterials 2002;23:3765-3772.
【40】Greg T. Hermanson Bioconjugate Techniques
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32769-
dc.description.abstract本實驗以聚己內酯(Poly(ε-caprolactone))薄膜為基材,發展出一個適合於神經修復的替代材料來取代現有的自體移植,並進行神經再生導管的研究。實驗分為三大部分:薄膜材料的改質、體外生物相容性評估與神經生長因子(NGF)的固定。首先在材料的研發上,我們利用醋酸電漿處理聚己內酯薄膜表面再與明膠進行交聯,分別進行水接觸角測試、機械強度測試及紅外線光譜分析。
在醋酸電漿表面處理,聚己內酯的水接觸角由67度降至33度,表示醋酸電漿成功沉積在聚己薄膜上。機械強度測試可知經由醋酸電漿改質接枝不影響聚己內酯本身機械性質。由紅外線光譜分析
(FTIR)可知聚己內酯成功接枝明膠且由X射線光電子能譜儀(XPS)得知經由交聯劑接枝明膠有較好的接枝效果。
在體外生物相容性評估的結果顯示,聚己內酯薄膜無論表面有無接枝明膠皆不會對PC12細胞造成細胞毒性的影響。此外證實,聚己內酯薄膜接枝明膠能使PC12細胞有較高的細胞活性。另外,在PC12細胞的培養中發現聚己內酯經醋酸電漿改質加交聯劑接枝明膠接枝NGF(PCL-AA-c-GEL-NGF)組神經突的生長數量較聚己內酯經醋酸電漿改質加交聯劑接枝明膠(PCL-AA-c-GEL)組高,顯示(PCL-AA-c-GEL-NGF)薄膜的NGF仍具有活性刺激PC12細胞分化。
zh_TW
dc.description.abstractA novel Poly(ε-caprolactone) membrane based nerve regenerated guidance channel was prepared and studied for substituting present nerve autograft. This study was conducted in three parts: surface modification of membrane, in vitro biocompatibility test, and grafting of NGF on membrane. In the first part, the gelatin was grafted on Poly(ε-caprolactone) membrane after treating with acetic acid palsma. The grafted membrane was tested in water contact angle, mechanical test, and Fourier-transform infrared spectrophotometer (FTIR) analysis. The result of contact angle, decreased from 67 to 33, indicates the acetic acid molecule was succesfully deposited on membrane. The acetic acid plasma treated membrane also revealed no degradation in mechanical properties, as revealed in tensile strength test.
The FTIR and XPS proved the enhancement of grafting performance between gelatin and Poly(ε-caprolactone).
Under in-vitro biocompatibility test, Poly(ε-caprolactone) perform no toxic reaction whether it grafted by gelatin or not. Finally, gelatin grafted Poly(ε-caprolactone) has higher ability to facilitate growth of PC12. In addtion, the neurite outgrowth on the NGF-grafted membrane (PCL-AA-c-GEL-NGF) is higher than the membrane without NGF grafting. This result indicated the improvement of PC12 activity in PCL-AA-c-GEL-NGF membrane by releasing NGF molecules.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:15:10Z (GMT). No. of bitstreams: 1
ntu-95-R93548002-1.pdf: 2375139 bytes, checksum: 23cf4677d78445a651da57906fec09a0 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
誌謝
中文摘要
英文摘要
第一章 緒論
1-1 前言…………………………………………………………………1
1-2 神經系統…………………………………………………………1
1.2.1神經系統的分區…………………………………………...1
1-2-1-1中樞神經系統………………………………………...2
1-2-1-2周邊神經系統………………………………………...2
1-2-2神經系統的功能………………………………………….. 3
1-3神經組織細胞…………………………………………….……..3
1-3-1 神經元……………………………………………………..3
1-3-2 神經膠細胞......................................5
1-3-2-1許旺氏細胞生物學特性………………………….……5
1-4周邊神經損傷的原因和分類…………………………………….5
1-4-1損傷原因…………………………………………………...5
1-4-2周圍神經傷的分類………………………………………...6
1-5周圍神經損傷的檢查及診斷………………………….………..7
1-5-1臨床檢查…………………………………………………...8
1-5-2電生理檢查………………………………………………...8
1-6周圍神經損傷修補的處理…………………………….………..8
1-6-1斷端直接縫合……………………………………………...9
1-6-2神經束縫合………………………………………………...9
1-6-3神經移植…………………………………………………...9
1-6-4神經管接合………………………………………….…….10
1-6-5神經生長因子及許旺氏細胞於神經修復的重要性….….11
1-7神經再生導管之研究發展………………………………………12
1-8研究目的…………………………………………………………12
第二章 理論基礎
2-1生物材料…………………………………………………………14
2-1-1生物相容性………………………………………………...14
2-1-2生物分解性………………………………………………...14
2-2生醫材料來源.......................................................14
2-2-1天然物質聚合物…………………………………………….17
2-2-1-1幾丁聚醣……………………………….………………17
2-2-1-2明膠………………………………………….…………18
2-2-2 化學合成聚合物…………………………………………..20
2-2-2-1聚己內酯………………………………………………..20
2-2-2-2聚乳酸………………………………………….………21
2-2-2-3聚甘醇酸.....................................22
2-3生物性材料之神經導管................................23
2-4合成材料之神經導管……………………………………………24
2-5生醫材料表面固定生物分子之方法……………………………25
2-5-1物理吸附法………………………………………………...25
2-5-2膠體包埋法………………………………………………...26
2-5-3共價鍵結法………………………………………………...26
2-6材料表面改質……………………………………............27
第三章 材料與方法
3-1實驗儀器…………………………………………………………29
3.1.1實驗藥品……………….………………..…………………29
3.1.2實驗儀器設備……………....……………………….……30
3.1.3 簡寫符號表…………………………..…………………..36
3.2實驗流程………………….…………………………………….37
3.3薄膜的製備…………………………….……………………….38
3.3.1聚己內酯薄膜Plasma改質…….…………………………..38
3.3.2明膠接枝在聚己內酯薄膜上………………………….……38
3.4聚己內酯導管……………………………………………………39
3.4.1聚己內酯導管的製作…………………………….…………39
3.4.2聚己內酯導管Plasma改質………………………………….40
3.4.3明膠接枝在聚己內酯導管上………………………….……40
3-5材料分析…………………………………………………………41
3-5-1傅立葉轉換紅外線光譜儀分析(FTIR)…………….……41
3-5-2機械強度分析(XPS)…………………….……………...41
3-5-3水接觸角分析……………………………………………...42
3-5-4X射線光電子能譜儀….…………….…………………...43
3-6體外評估之生物活性及細胞相容性……………………………43
3-6-1 PC12細胞播種於材料表面的相容性……………………..43
3-6-2 PC12細胞的神經突生長數量評估…………………………45
第四章 實驗結果與討論
4-1 實驗薄膜之材料分析評估……………………………….……47
4-1-1 傅立葉轉換紅外線光譜儀(FT/IR)分析.…………………47
4-1-2機械強度測試—拉伸試驗………………………………….49
4-1-3 水接觸角測量……………………………………………..52
4-1-4 X射線光電子能譜儀(XPS)…………………………...55
4-2體外評估之生物活性及細胞相容性……………………………59
4-2-1 PC12細胞播種於材料表面的相容性……………………..59
4-2-2 PC12細胞神經突生長測試………………………………..63
4-3 PCL神經導管……………………………………………………66
第五章 結論………………………………………………………...68
第六章 參考文獻………………………………………………………70
圖目錄
圖1-1神經系統………………………………….……………………..2
圖1-2神經元…………………………………….……………………..4
圖2-1幾丁聚醣…………………………………………………………18
圖2-2幾丁質……………………………………………………………18
圖2-3明膠結構…………………………………………………………20
圖2-4 polycaprolactone結構……………………………………….21
圖2-5聚乳酸……………………………………………………………22
圖2-6聚甘醇酸…………………………………………………………23
圖3-1 應力-應變曲線圖……………………………………….…..34
圖3-2實驗流程圖………………………………………………………37
圖3-3 薄膜拉伸試片…………………………………….…………..42
圖4-1傅立葉轉換紅外線光譜儀(FT/IR)分析……………….………48
圖4-2最大抗拉強度…………………………………….…………...50
圖4-3延伸率……………………………………………………………50
圖4-4楊氏模數…………………………………………………………51
圖4-5 醋酸電漿輸出功率30W分別通100、150、200mtorr氣体壓力,所得的水接觸角……………………………………………………….53
圖4-6醋酸電漿輸出功率50W分別通100、150、200mtorr氣体壓力,所得的水接觸角………………….……………………………………53
圖4-7所設的電漿最佳條件為輸出功率30W,通的氣體壓力為100mtorr……………………………………………………….......54
圖4-8 水接觸角照片……………………………….………………..54
圖4-9 X射線光電子能譜來分析PCL薄膜表面……………….…….56
圖4-10 X射線光電子能譜來分析PCL-GEL薄膜表面……………….56
圖4-11 X射線光電子能譜來分析PCL-AA-GEL薄膜表面……………57
圖4-12 X射線光電子能譜來分析PCL-AA-c-GEL薄膜表面…………57
圖4-13利用X射線光電子能譜儀來分析其表面所含氮原子含量….58
圖4-14 PC12細胞在培養1天後的WST-1還原活性分析的相對強度…61
圖4-15 PC12細胞在培養3天後的WST-1還原活性分析的相對強度…61
圖4-16 PC12細胞在培養1天後的LDH活性分析的相對強度…………62
圖4-17 PC12細胞在培養3天後的LDH活性分析的相對強度…………62
圖4-18 PC12細胞在與PCL-AA-c-GEL及PCL-AA-c-GEL-NGF薄膜共養下的細胞型態……………………………………………….……………64
圖4-19神經突生長細胞的數量………………………………….……65
圖4-20 PCL神經導管,長1.5cm…………….……………………...66
圖4-21 PCL神經導管,直徑1.5mm……………………………….….67
表目錄
表2-1常見的聚酯類聚合物………………………………….……...15
表2-2生物分解性材料需具備之特性…………………………………16
dc.language.isozh-TW
dc.subject生物相容性zh_TW
dc.subject聚己內酯zh_TW
dc.subject神經再生導管zh_TW
dc.subjectBiocompatibilityen
dc.subjectNerve regenerated guidance channelen
dc.subjectPoly(ε-caprolactone)en
dc.title聚己內酯薄膜表面經明膠改質固定神經生長因子用於周邊神經再生導管之研究zh_TW
dc.titleA Study of Gelatin-Modified Poly(ε-caprolactone) Membrane Immobilized with Nerve Growth Factor as Guidance Channels for Peripheral Nerve Regenerationen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王盈錦,邱信程,陳克紹
dc.subject.keyword聚己內酯,神經再生導管,生物相容性,zh_TW
dc.subject.keywordPoly(ε-caprolactone),Nerve regenerated guidance channel,Biocompatibility,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved