請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32761完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃孝平(Hsiao-Ping Huang) | |
| dc.contributor.author | Cheng-Chih Li | en |
| dc.contributor.author | 李成致 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:14:59Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-25 | |
| dc.identifier.citation | 1. Alatiqi, I. M. & Luyben, W. L. (1986) Control of a complex sidestream column/stripper distillation configuration. Ind. Eng. Chem. Process Des. Dev., 25, 762-767.
2. Basseville, M. (1998) On-board component fault detection and isolation using the statistical local approach. Automatica, 34, 1391-1415. 3. Basseville, M. & Nikiforov, I. (1993) Detection of Abrupt Changes – Theory and Applications, New York, Prentice-Hall. 4. Benveniste, A., Basseville, M. & Moustakidges, G. (1987) The asymptotic local approach to change detection and model validation. IEEE Trans. Auto. Control, 32, 583-592. 5. Box, G. E. P. (1954) Some theorems on quadratic forms applied on the study of analysis of variance problems: effect of inequality of variance in one-way classification. Ann. Math. Stat., 25, 290-302. 6. Box, G. E. P., Jenkins, C. M. & Reinsel, G. C. (1994) Time series analysis: forecasting and control, Englewood Cliffs, Prentice-Hall. 7. Box, G. E. P. & Luceno, A. (1997) Statistical control, Danvers, John Wiley & Sons. 8. Casella, G. & Berger, R. L. (2002) Statistical inference, Pacific Grove, Duxbury. 9. Champagne, B. (1994) Adaptive eigendecomposition of data covariance matrices based on first-order perturbation. IEEE Trans. Signal processing, 42, 2758-2770. 10. Chen, G. & McAvoy, T. J. (1998) Predictive on-line monitoring of continuous processes. J. Proc. Cont., 8, 409-420. 11. Chiang, L. H., Russell, E. L. & Braatz, R. D. (2000) Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom. Intell. Lab. Syst, 50, 243-252. 12. Chow, E. & Willsky, A. (1984) Analytical redundancy and the design of robust failure detection systems. IEEE Trans. Auto. Cont., 29, 603-614. 13. Clark, R. & Willsky, A. (1979) The dedicated observer approach to instrument fault detection,15th IEEE-CDC,Florida, USA,237-241 14. Dayal, B. S. & MacGregor, J. F. (1997) Recursive exponentially weighted PLS and its applications to adaptive control and prediction. J. Proc. Cont., 7, 169-179. 15. de Jong, S. (1993) SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst., 18, 251-263. 16. Draper, N. R. & Smith, H. (1998) Applied regression analysis, New York, John Wiley & Sons. 17. Duda, R., Hart, P. E. & Stock, D. G. (2001) Pattern Classification, New York, Wiley. 18. Erdogmus, D., Rao, Y. N., Peddaneni, H., Hegde, A. & Principe, J. C. (2004) Recursive principal components analysis using eigenvector matrix perturbation. EURASIP Journal of Applied Signal Processing, 13, 2034-2041. 19. Faloutsos, C., Ranganathan, M. & Manolopoulos, Y. (1994) Fast subsequence matching in time series databases. Sigmod Record, 23, 419-429. 20. Frank, P. (1990) Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy – a survey and some new results. Automatica, 26, 459-474. 21. Garvin, D. A. (1987) Competing in the eight dimensions of quality. Harvard Business Review, 65. 22. Geladi, P. & Kowalski, B. R. (1986) Partial least-squares regressions: a tutorial. Analytica Chimica, 185, 1-17. 23. Gertler, J. (1988) Survey of model-based failure detection and isolation. IEEE Control Syst. Magaz., 12, 3-11. 24. Gertler, J. (1998) Fault Detection and Diagnosis in Engineering Systems, New York, Marcel Dekker. 25. Gertler, J. & Kunwer, M. (1995) Optimal residual decoupling for robust fault diagnosis. Int. J. Control, 61, 395-421. 26. He, Q. P., Qin, S. J. & Wang, J. (2005) A new fault diagnosis method using fault directions in fisher discirminant analysis. AIChE J, 51, 555-571. 27. Horowitz, E., Shahni, S. & Anderson-Freed, S. (1993) Fundamentals of data structures in C, New York, Computer Science Press. 28. Höskuldsson, A. (1988) PLS regression methods. J. Chemom., 2, 211-228. 29. Hsia, T. C. (1977) System identification : least-squares methods, Lexington Books. 30. Huang, H. P. & Jeng, J. C. (2002) Monitoring and assessment of performance for single loop control systems. Ind. Eng. Chem. Res., 41, 1297-1309. 31. Huang, H. P., Lee, M. W. & Chen, C. L. (2000a) Inverse-based design for a modified PID controller. J. Chin. Inst. Chem. Engrs., 31, 225-236. 32. Huang, Y., Gertler, J. & McAvoy, T. J. (2000b) Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions. J. Proc. Cont., 10, 459-469. 33. Isermann, R. (1984) Process fault detection based on modeling and estimation methods - a survey. Automatica, 20, 387-404. 34. Jackson, J. E. (1991) A User’s Guide to Principal Components, New York, John Wiley & Sons. 35. Jackson, J. E. & Mudholkar, G. (1979) Control procedures for residuals associated with principal component analysis. Technom, 21, 341-349. 36. Jeng, J. C. (2002) Performance assessment and on-line monitoring of control systems, Doctorial Dissertation,Department of Chemical Engineering, National Taiwan University 37. Jeng, J. C. & Huang, H. P. (2006) Model-based autotuning systems with two-degree-of-freedom control. J. Chin. Inst. Chem. Engrs., 37, 95-102. 38. Jeng, J. C., Li, C. C. & Huang, H. P. (2006) Dynamic processes monitoring using predictive PCA. J. Chin. Inst. Eng., 29, 311-318. 39. Jin, C. & Gertler, J. (2004) Noise-induced bias in last principal component modeling of linear system. J. Proc. Cont., 14, 365-376. 40. Johannesmeyer, M. C., Singhal, A. & Seborg, D. E. (2002) Pattern matching in historical data. AIChE J, 48, 2022-2038. 41. Johnson, L. W., Riess, R. D. & Arnold, J. T. (1993) Introduction to linear algebra, New York, Addison Wesley. 42. Johnson, R. A. & Wichern, D. W. (1998) Applied Multivariate Statistical Analysis, New Jersey, Prentice-Hall. 43. Kano, M., Hasebe, S., Hashimoto, I. & Ohno, H. (2002) Statistical process monitoring based on dissimilarity of process data. AIChE J, 48, 1231-1240. 44. Kaspar, M. H. & Ray, W. H. (1993) Partial least squares modeling as successive singular value decompositions. Comp. Chem. Eng., 17, 985-989. 45. Keogh, E., Chakrabarti, K. & Pazzani, M. (2001) Dimensionality reduction for fast similarity search in large time series databases. Knowl. Info. Syst., 3, 263-286. 46. Kesavan, P. & Lee, J. H. (1997) Diagnostic tools for multivariable model-based control systems. Ind. Eng. Chem. Res., 36, 2725-2738. 47. Kourti, T. & MacGregor, J. F. (1995) Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemom. Intell. Lab. Syst., 28, 3-21. 48. Kourti, T. & MacGregor, J. F. (1996) Multivariate SPC methods for process and product monitoring. J. Qual. Tech., 28, 409-428. 49. Kresta, J. V., MacGregor, J. F. & Marlin, T. E. (1994) Development of inferential process models using PLS. Can. J. Chem. Eng., 69, 35-47. 50. Kresta, J. V., Marlin, T. E. & MacGregor, J. F. (1991) Multivariate statistical monitoring of process operating performance. The Canadian Journal of Chemical Engineering, 69, 35-47. 51. Krzanowski, W. J. (1979) Between-groups comparison of principal components. J. Amer. Stat. Assoc., 74, 703-707. 52. Ku, W., Storer, R. H. & Georgakis, G. (1995) Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst., 20, 179-196. 53. Lan, W. W. (2002) An LMI approach to H∞ PI controller design on a double effect evaporator and a boiler process, Master Dissertation,Department of Chemical Engineering, National Taiwan University 54. Laser, M. (2000) Recent safety and environmental legislation. Trans IchemE, 78, 419-422. 55. Lee, C., Choi, S. W., Lee, J. M. & Lee, I. B. (2004) Sensor fault identification in MSPM using reconstructed monitoring statistics. Ind. Eng. Chem. Res., 43, 4293-4304. 56. Li, C. C. & Huang, H. P. (2003) Model building by mergine submodels using PLSR. Journal of Chemical Engineering of Japan, 36, 1023-1033. 57. Li, C. C., Jeng, J. C. & Huang, H. P. (2006) Multiple sensor fault diagnosis for dynamic processes. submit to Comp. Chem. Eng. 58. Li, W. & Jiang, J. (2004) Isolation of parametric faults in continuous-time multivariable systems: a sampled data-based approach. Int. J. Control, 77, 173-187. 59. Li, W. & Shah, S. (2002) Structured residual vector-based approach to sensor fault detection and isolation. J. Proc. Cont., 12, 429-443. 60. Li, W., Yue, H. H., Valle-Cervantes, S. & Qin, S. J. (2000) Recursive PCA for adaptive process monitoring. J. Proc. Cont., 10, 471-486. 61. Lin, W. & Qin, S. J. (2005) Optimal structured residual approach for improved faulty sensor diagnosis. Ind. Eng. Chem. Res., 44, 2117-2124. 62. Ljung, L. (1999) System identification: theory for the user, Upper Saddle River, Prentice Hall. 63. Luo, R., Misra, M. & Himmelblau, D. M. (1999) Sensor fault detection via multiscale analysis and dynamic PCA. Ind. Eng. Chem. Res., 38, 1489-1495. 64. MaCabe, W. L., Smith, J. C. & Harriott, P. (1993) Unit operations of chemical engineering, New York, McGraw-Hill. 65. MacGregor, J. F. & Kourti, T. (1995) Statistical process control of multivariate processes. Cont. Eng. Pract., 3, 403-414. 66. Maesschalck, R. D., Jouan-Rimbaud, D. & Massat, D. L. (2000) The Mahalanobis distance. Chemom. Intell. Lab. Syst., 50, 1-18. 67. Massoumnia, M., Verghese, G. & Willsky, A. (1989) Failure detection and identification. IEEE Trans. Auto. Cont., 34, 316-321. 68. Miller, P., Swanson, R. E. & Heckler, C. E. (1998) Contribution plots: a missing link in multivariate quality control. App. Math. Comp. Sci., 8, 775-792. 69. Milne, R. (1987) Strategies for diagnosis. IEEE Trans. Systems, Man and Cybernetics, 17, 333-339. 70. Montgomery, D. C. (2001) Introduction to Statistical Quality Control, New Jersey, John Wiley & Sons. 71. Newell, R. B. & Fisher, D. G. (1972) Model development, reduction, and experimental evaluation for an evaporator. Ind. Eng. Chem. Process Des. Dev., 11, 213-221. 72. Newell, R. B. & Lee, P. L. (1989) Applied process control - a case study, Englewood Cliffs, Prentice Hall. 73. Nimmo, I. (1995) Adequately address abnormal situation operations. Chemical Engineering Practice, 91, 1361-1375. 74. Nomikos, P. (1996) Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis. ISA Trans., 35, 147-168. 75. Nomikos, P. & MacGregor, J. F. (1994) Monitoring batch processes using multiway principal component analysis. AIChE J, 40, 1361-1373. 76. Nomikos, P. & MacGregor, J. F. (1995) Multivariate SPC charts for monitoring batch processes. Technom, 37, 41-59. 77. Notohardjono, B. D. & Ermer, D. S. (1986) Time series control charts for correlated and contaminated data. Journal of Engineering for industry, 108, 219-226. 78. Patton, R., Frank, P. & Clark, R. (2000) Issues of fault diagnosis for dynamic system, London, Springer-Verlag. 79. Phatak, A. & de Jong, S. (1997) The geometry of partial least squares. J. Chemom., 11, 311-338. 80. Piovoso, M. J. & Kosanovich, K. A. (1994) Applications of multivariate statistical methods to process monitoring and controller design. Int. J. Control, 59, 743-765. 81. Qin, S. J. (1998) Recusrive PLS algorithms for adaptive data modeling. Comp. Chem. Eng., 22, 503-514. 82. Qin, S. J. & Li, W. (1999) Detection, identification, and reconstruction of faulty sensors with maximize sensitivity. AIChE J, 45, 1963-1976. 83. Qin, S. J. & Li, W. (2001) Detection and identification of faulty sensors in dynamic processes. AIChE J, 47, 1581-1593. 84. Qin, S. J., Valle, S. & Pivoso, M. J. (2001) On unifying multiblock analysis with applications to decentralized process monitoring. J. Chemom., 15, 715-742. 85. Raghavan, H. (2004) Quantitative approaches for fault detection and diagnosis in process industries, PhD Dissertation,Department of Chemical and material engineering, University of Alberta 86. Raich, A. & Çinar, A. (1996) Statistical process monitoring and disturbance diagnosis in multivariable continuous process. AIChE J, 42, 283-288. 87. Rao, C. R. (1973) Linear statistical inference and its applications, New York, John Wiley & Sons. 88. Russell, E., Chiang, L. H. & Braatz, R. D. (2000) Data-driven methods for fault detection and diagnosis in chemical processes, London, Springer. 89. Seber, G. A. F. (1977) Linear Regression Analysis, New York, John Wiley & Sons. 90. Singhal, A. & Seborg, D. E. (2002a) Pattern Matching in Historical Batch Data using PCA. IEEE Control Syst. Magaz., 22, 53-63. 91. Singhal, A. & Seborg, D. E. (2002b) Pattern Matching in Multivariate Time Series Databases using a Moving-Window Approach. Ind. Eng. Chem. Res., 41, 3822-3838. 92. Singhal, A. & Seborg, D. E. (2005) Clustering multivariate time-series data. J. Chemom., 19, 427-438. 93. Thompson, J. R. & Koronacki, J. (1993) Statistical process control for quality improvement, New York, Chapman & Hall. 94. van Overschee, P. & de Moor, B. (1994) N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 30, 75-93. 95. Venkatasubramanian, V., Rengaswamy, R. & Kavuri, S. N. (2003a) A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies Comp. Chem. Eng., 27, 313-326. 96. Venkatasubramanian, V., Rengaswamy, R., Yin, K. & Kavuri, S. N. (2003b) A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Comp. Chem. Eng., 27, 293-311. 97. Venkatasubramanian, V. & Rich, S. H. (1988) An object-oriented two-tier architecture for integrating compiled and deep-level knowledge for process diagnosis. Comp. Chem. Eng., I2, 903-921. 98. Wang, X., Kruger, U. & Irwin, G. W. (2005) Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res., 44, 5691-5702. 99. Wangen, L. E. & Kowalski, B. R. (1989) A multiblock partial least squares algorithm for investigating complex chemical systems. J. Chemom., 3, 3-20. 100. Westerhuis, J. A., Gurden, S. & Smilde, A. (2000) Generalized contribution plots in multivariate statistical process monitoring. Chemom. Intell. Lab. Syst, 51, 95-114. 101. Westerhuis, J. A., Kourti, T. & MacGregor, J. F. (1998) Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics, 12, 301-321. 102. Willsky, A. (1976) A survey of design method for failure in dynamic systems. Automatica, 12, 601-611. 103. Wise, B. M. & Gallagher, N. B. (1996) The process chemometrics approache to process monitoring and fault detection. J. Proc. Cont., 6, 329-349. 104. Wold, S., Esbensen, K. & Geladi, P. (1987) Principal components analysis. Chemom. Intell. Lab. Syst., 2, 37-47. 105. Wold, S., Sjöström, M. & Eriksson, L. (2001) PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst., 58, 109-130. 106. Wood, R. K. & Berry, M. W. (1973) Terminal composition control of a binary distillation column. Chem. Eng. Sci., 28, 1707-1717. 107. Xu, R. & Kwan, C. (2003) Robust isolation of sensor failures. Asian Journal of Control, 5, 12-23. 108. Yeh, H. C. (1998) Time Series Analysis and Its Application (Chinese Version), Taipei, National Taiwan University Press. 109. Ying, C. M. & Joseph, B. (2000) Sensor fault detection using noise anaysis. Ind. Eng. Chem. Res., 39, 396-407. 110. Yoon, S. & MacGregor, J. F. (2001) Fault diagnosis with multivariate statistical models Part I: using steady state fault signatures. J. Proc. Cont., 11, 387-400. 111. Yue, H. H. & Qin, S. J. (2001) Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res., 40, 4403-4414. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32761 | - |
| dc.description.abstract | 本論文主要注重在發展出新的模式方法對於加成性 (additive) 以及乘積性(multiplicative) 的錯誤進行全盤式的診斷。這些建立的錯誤診斷模型具備有相當多樣化的診斷能力,從簡單的錯誤偵測 (detection) 乃至於到細部的錯誤孤立 (isolation) 以及錯誤大小的識別 (identification)。
在一開始,論文中會回顧一些常用於錯誤診斷的多變量統計方法,並且利用一個簡單的範例來說明此類方法在錯誤孤立先天上的限制。然後對於這些常用的統計方法提出一些修正,以便將此類傳統的技術能夠延伸至監控與時間相關 (time-dependent) 的程序,或者能夠在開環的情況之下,正確地孤立出一些事先指定 (specified) 的錯誤型態。 然後,文中將會介紹一些基本的靜態與動態程序模型識別的方法。基於部分最小平方法 (PLS),本文將提出一個藉由合併部分最小平方法的子模型 (sub-models) 而得到程序的整體模型 (global model) 的效率模型識別方法,並且利用一個簡單數值的範例來說明此方法的實用性。藉由程序的子模型以及合併後的整體模型,文中亦提出一個另類型態的分散式 (decentralized) 錯誤診斷方案,用以孤立可能的錯誤原因。另外,在模式識別之中,對於動態模式參數的變異以及共變結構的估計,亦會作出解析式的推導。 另外,一項新型與全域型的感測器 (sensor) 錯誤診斷方法亦在此論文被提出,此方法可用來診斷任意多維的感測器故障。基於這個提出的感測器錯誤診斷方法,有錯誤的感測器可以被輕易地偵測,孤立,而且錯誤的大小亦可被識別。 基於之前所推導的動態程序參數之變異數,論文中會定義一系列的模式參數的相似度 (similarity)。乘積性的程序錯誤可以利用這些新定義的相似度來偵測與孤立。對於一些特定種類的乘積性錯誤,例如程序增益 (gain) 錯誤以及程序時延 (deadtime) 錯誤,其錯誤的大小可以利用這些相似度來識別。 文中將會利用一些說明用的範例研究來展示上述理論概念的可行性。 | zh_TW |
| dc.description.abstract | The focus of this dissertation is on developing novel model-based approaches for additive and multiplicative fault diagnosis (FD). The identified process diagnostic models can be extended to have varying fault diagnostic capabilities, from simple fault detection to detailed fault isolation and identification.
Some frequently used multivariate statistical methodologies for FD are reviewed, and their major limitations in fault isolation are demonstrated. Novel modifications of conventional statistical techniques are proposed, and extended to monitor time dependent processes and to isolate some specified faulty types under open-loop conditions. Some basic static and dynamic process model identification approaches are reviewed. An efficient model identification method by merging PLSR sub-models is presented; and a numerical application is used to illustrate the practicality of this method. An alternative decentralized FD scheme is also proposed based on the sub-models and merged global model. Moreover, the parameter variance and covariance structures are investigated analytically for dynamic process representation. A novel and unified sensor FD approach is constructed to arbitrary multiple sensor failure scenarios. Based on the proposed methodology, the faulty sensors can be easily detected, isolated and identified. A variety of parameter similarities for dynamic processes are defined based on the derived parameter variances. With the use of these similarities, the multiplicative faults of processes can be detected and isolated. For some multiplicative faults, e.g. changes in gain and deadtime, the faulty parameter can be specified, and the fault magnitude can be identified. Illustrative case studies are included to demonstrate these theoretical ideas in this thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:14:59Z (GMT). No. of bitstreams: 1 ntu-95-D89524006-1.pdf: 5646651 bytes, checksum: d6fc5049ca78fa4a35a69ffe724bae30 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS I
ABSTRACT III 摘要 V CONTENTS VII LIST OF TABLES XIII LIST OF FIGURES XV ABBREVIATIONS AND ACRONYMS XVII 1 INTRODUCTION 1 1.1 FAULT DIAGNOSIS (FD) 1 1.2 BASIC TASKS OF FD 2 1.2.1 Detection 2 1.2.2 Isolation 3 1.2.3 Identification 3 1.2.4 Recovery 3 1.3 NECESSITIES FOR FD 4 1.3.1 Safety 4 1.3.2 Performance 4 1.3.3 Cost 5 1.4 METHODOLOGIES FOR FD 5 1.4.1 Diagnostic model-based approach 6 1.4.2 Statistical model-free approach 6 1.4.3 Knowledge-based approach 7 1.5 CLASSIFICATION OF FAULTS 8 1.5.1 Additive faults 8 1.5.2 Multiplicative faults 9 1.6 DISSERTATION ORGANIZATION 11 2 MULTIVARIATE STATISTICAL METHODS FOR FD 13 2.1 OVERVIEW 13 2.2 MULTIVARIATE STATISTICAL METHODS 14 2.2.1 Principal components analysis (PCA) 14 2.2.2 Dynamic PCA (DPCA) 15 2.2.3 Fisher discriminant analysis (FDA) 16 2.3 FAULT DETECTION AND ISOLATION 17 2.3.1 Monitoring statistics 17 2.3.2 Contribution plots 19 2.3.3 Illustrative example 21 2.4 ADAPTIVE PROCESS MONITORING 22 2.4.1 Time series analysis 23 2.4.1.1 Modeling 23 2.4.1.2 Forecasting 24 2.4.2 Dynamic modeling for scores 25 2.4.3 Predictive monitoring model 27 2.4.4 Process change detection 28 2.4.5 Illustrative examples 29 2.4.5.1 Example 1: Predictive monitoring 29 2.4.5.2 Example 2: Process change detection 33 2.4.6 Results and discussions 33 2.5 ISOLATION ENHANCED PCA FOR FD 34 2.5.1 Introduction 34 2.5.2 Filtered signals and their PCA and LPC 34 2.5.3 Isolation of fault type A (FT-A) 36 2.5.3.1 Isolation of fault A1 36 2.5.3.2 Isolation of fault A2 36 2.5.3.3 Isolation of fault A3 37 2.5.4 Isolation of fault type B (FT-B) 37 2.5.4.1 LPC of PCA with input decompositions 38 2.5.4.2 Isolation of fault B1 39 2.5.4.3 Isolation of fault B2 40 2.5.4.4 Isolation of fault B3 40 2.5.5 RPCA for LPC computation 41 2.5.5.1 RPCA algorithm 41 2.5.5.2 Computation of LPC 43 2.5.6 Illustrative example 43 2.5.7 Results and discussions 46 2.6 CONCLUSIONS 46 3 IDENTIFICATION OF STATIC AND DYNAMIC PROCESSES 47 3.1 OVERVIEW 47 3.2 STATIC PROCESS DESCRIPTION 48 3.3 STATIC MODEL IDENTIFICATION 48 3.3.1 Multiple linear regression (MLR) 49 3.3.2 Last principal components (LPC) method 50 3.3.3 Partial least squares regression (PLSR) 50 3.3.4 Goodness of fitting 53 3.4 MODEL MERGING USING PLSR 54 3.4.1 Introduction 54 3.4.2 Regression coefficient matrix for PLSR 54 3.4.3 Merging two sub-models into one global model 56 3.4.4 Multiblock merging procedure 60 3.4.5 Computational complexity and storage capacitance analysis 62 3.4.5.1 Computational complexity analysis 62 3.4.5.2 Storage capacitance analysis 64 3.4.6 Application 1: PLSR model merging 64 3.4.6.1 System descriptions and settings 64 3.4.6.2 Identification of sub-models using PLSR 65 3.4.6.3 Identification of global model using combined data set 66 3.4.6.4 Identification of global model using projected loadings 67 3.4.6.5 Results and discussions 68 3.4.7 Application 2: Decentralized FD using PLSR 68 3.4.7.1 Introduction 68 3.4.7.2 Proposed decentralized FD procedure 69 3.4.7.3 System descriptions and settings 71 3.4.7.4 Fault scenario 1 : raising temperature in cooling water 77 3.4.7.5 Fault scenario 2 : impurity in inlet flow 79 3.4.7.6 Results and discussions 81 3.5 DYNAMIC PROCESS DESCRIPTION 82 3.6 NONPARAMETRIC DYNAMIC MODEL IDENTIFICATION 82 3.6.1 Parameter estimation 82 3.6.2 Estimation of parameter variances 84 3.6.3 Estimation of deadtimes of processes 85 3.6.4 Features of this nonparametric model representation 86 3.6.5 Illustrative example 86 3.7 PARAMETRIC MODEL IDENTIFICATION 89 3.7.1 First order discrete transfer function 89 3.7.2 Second order discrete transfer function 89 3.7.3 Illustrative application 90 3.8 CONCLUSIONS 91 4 MULTIPLE SENSOR FAULT DIAGNOSIS 93 4.1 OVERVIEW 93 4.2 INTRODUCTION 94 4.3 ISF VECTORS AND BSFM 95 4.4 METHODS FOR CONSTRUCTING BSFM 98 4.4.1 Constructing BSFM by perturbing method 98 4.4.2 Constructing BSFM by analytical method 99 4.4.3 Constructing BSFM by hybrid method 103 4.5 FAULT DETECTION USING BSFM 104 4.6 SENSOR FAULT ISOLATION AND IDENTIFICATION USING BSFM 106 4.6.1 Isolation of multiple sensor faults 106 4.6.2 Identification of multiple sensor fault magnitudes 107 4.6.3 Analysis of sensitivity of fault isolation 108 4.7 ILLUSTRATIVE EXAMPLE 110 4.7.1 Process setup 110 4.7.2 Preliminary works 112 4.7.3 Fault detection, isolation and identification 113 4.8 CONCLUSIONS 119 5 MULTIPLE MULTIPLICATIVE FAULT DIAGNOSIS FOR DYNAMIC PROCESSES 121 5.1 OVERVIEW 121 5.2 INTRODUCTION 122 5.3 CONVENTIONAL SIMILARITY MEASURES FOR DATA SETS 124 5.3.1 PCA-based similarity measures 124 5.3.2 Distance-based similarity measure 125 5.3.3 Appraisal of conventional similarity measures 126 5.3.3.1 Illustration 1 126 5.3.3.2 Illustration 2 127 5.3.3.3 Results and discussions 128 5.4 DEFINITIONS OF PARAMETER SIMILARITY FOR STATIC PROCESSES 128 5.4.1 Hypothesis test of significance of parameters 128 5.4.2 Violating number and parameter similarity 129 5.5 DEFINITIONS OF SIMILARITIES FOR DYNAMIC PROCESSES 130 5.5.1 Overall similarity 131 5.5.2 Sub-model similarities 133 5.5.2.1 Similarity for detection of sub-model changes 133 5.5.2.2 Similarity for detection of deadtime changes 133 5.5.2.3 Similarity for detection of gain changes 135 5.6 EXTENSIONS TO ONLINE PROCESS FD 137 5.7 ILLUSTRATIVE EXAMPLES 138 5.7.1 Application 1: Offline process FD 139 5.7.2 Application 2: Online process FD 141 5.8 CONCLUSIONS 146 6 CONCLUSIONS 147 6.1 SUMMARY 147 6.2 CONTRIBUTIONS OF THIS DISSERTATION 148 6.3 RECOMMENDATIONS FOR FUTURE WORKS 149 REFERENCES 151 | |
| dc.language.iso | en | |
| dc.subject | 感知器錯誤 | zh_TW |
| dc.subject | 模型識別 | zh_TW |
| dc.subject | 參數相似度 | zh_TW |
| dc.subject | 乘積性錯誤 | zh_TW |
| dc.subject | 錯誤診斷 | zh_TW |
| dc.subject | Sensor fault | en |
| dc.subject | Fault diagnosis | en |
| dc.subject | Model identification | en |
| dc.subject | Multiplicative fault | en |
| dc.subject | Parameter similarity | en |
| dc.title | 以 模 式 方 法 為 基 礎 之 程 序 錯 誤 診 斷 | zh_TW |
| dc.title | Model-Based Approaches for Process Fault Diagnosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳強琛(Chan-Cheng Chen),王國彬(Gow-Bin Wang),陳榮輝(Junghui Chen),張玨庭(Chuei-Tin Chang),陳誠亮(Cheng-Liang Chen),余政靖(Cheng-Ching Yu),鄭西顯(Shi-Shang Jang) | |
| dc.subject.keyword | 模型識別,錯誤診斷,感知器錯誤,乘積性錯誤,參數相似度, | zh_TW |
| dc.subject.keyword | Model identification,Fault diagnosis,Sensor fault,Multiplicative fault,Parameter similarity, | en |
| dc.relation.page | 158 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 5.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
