Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32749
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡淑華
dc.contributor.authorYu-Wei Yehen
dc.contributor.author葉育瑋zh_TW
dc.date.accessioned2021-06-13T04:14:44Z-
dc.date.available2006-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation1.U. Diebold. “The surface science of titanium dioxide.” Surf. Sci. Reports 48 (2003) 53.
2.垰田博史著,張晶、楊健譯。『光觸媒圖解』商周出版,2003,台北。
3.A.J. Bard. “Integrated chemical systems.” John Wiley & Sons, Inc., New York, 1994.
4.A.L. Linsebigler, G. Lu and J.T. Yate. Jr. “Photocatalysis on TiO2 surface: principles, mechanism, and selected results.” Chem. Rev. 95 (1995) 735.
5.黃冠群。『含鈦孔洞物質之合成、結構特性與催化反應』。碩士論文,國立台灣大學化學系。台北,2003。
6.賴怡蓉。『氧化鈦奈米管之製備、鑑定及催化應用』。碩士論文,國立中央大學化學系。中壢,2005。
7.R.R. Bacsa and J. Kiwi. “Effect on rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid.” Appl. Catal. B 16 (1998) 19.
8.M.-C. Yan, F. Chen, J.-L. Zhang and M. Anpo. “Preparation of controllable crystalline titania and study on the photocatalytic properties.” J. Phys. Chem. B 109 (2005) 8673.
9.Q.-H. Zhang, L. Gao and J.-K. Guo. “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis.” Appl. Catal. B 26 (2000) 207.
10.S. Bakardjieva, J. Subrt, V. Stengl, M.J. Dianez and M.J. Sayagues. “Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase.” Appl. Catal. B 58 (2005) 193.
11.T. Ohno, K. Tokieda, S. Hihashida and M. Matsumura. “Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene.” Appl. Catal. A 244 (2003) 383.
12.J.C. Yu, J.-G. Yu, W.-K. Ho and L.-Z. Zhang . “Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation.” Chem. Commun. (2001) 1942.
13.T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka and S. Ito. “Low- temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity.” J. Colloid Interface Sci. 281 (2005) 510.
14.D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh and M.C. Thunauer. “Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR.” J. Phys. Chem. B 107 (2003) 4545.
15.S. Iijima. “Helical microtubules of graphitic carbon.” Nature 354 (1991) 56.
16.R. Tenne, L. Margulis, M. Genut and G. Hodes. “Polyhedral and cylin- drical structures of tungsten disulphide.” Nature 360 (1992) 444.
17.M. Remskar. “Inorganic nanotubes.” Adv. Mater. 16 (2004 ) 1497.
18.M. Adachi, Y. Murata and M. Harada M and S. Yoshikawa. “Formation of titania nanotubes with high photo-catalytic activity.” Chem. Lett. (2000) 942.
19.M. Adachi, Y. Murata, I. Okada and Yoshikawa. “Formation of titania nanotubes and applications for dye-sensitized solar cells.” J. Electrochem. Soc. 150 (2003) G488.
20.P. Hoyer. “Formation of a titanium dioxide nanotube array.”Langmuir 12 (1996) 141.
21.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara. “Formation of titanium oxide nanatube.” Langmuir 14 (1998) 3160.
22.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara. “Titania nanotubes prepared by chemical processing.” Adv. Mater. 11 (1999) 1307.
23.R. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando. “Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations.” J. Phys. Chem. B 109 (2005) 6210.
24.A. Nakahira, W. Kato, M. Tamai, T. Isshiki and K. Nishio. “Synthesis of nanotube from a layered H2Ti4O9 • H2O in a hydrothermal treatment using various titania sources.” J. Mater. Sci. 39 (2004) 4239.
25.Q. Chen, G.H. Du, S. Zhang, and L.-M. Peng, “The structure of trititanate nanotubes”, Acta Cryst. B58 (2002) 587.
26.Q. Chen, W.-Z. Zhou, G.-H. Du and L.-M. Peng. “Trititanate nanotubes made via single alkali treatment.” Adv. Mater. 14 (2002) 1208.
27.X.-M Sun and Y.-D. Li. “Synthesis and characterization of ion-exchangeable titanate nanotubes.” Chem. Eur. J 9 (2003) 2229.
28.C.-C. Tsai and H.-S. Teng. “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment.” Chem. Mater. 16 (2004) 4352.
29.C.-C. Tsai and H. Teng “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments” Chem. Mater. 18 (2006) 367.
30.Z.-Y. Yuan and B.-L. Su. “Titanium oxide nanotubes, nanofibers and nanowires.” Colloid and Surfaces A: Phiscochem. Eng. Aspects 241 (2004) 173.
31.D.V. Bavykin, V.N. Parmon, A.A. Lapkin and F.C. Walsh. “The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes.” J. Mater. Chem. 14 (2004) 3370.
32.D.V. Bavykin, J.M. Friedrich, A.A. Lapkin, and F.C. Walsh “Stability of Aqueous Suspensions of Titanate Nanotubes” Chem. Mater. 18 (2006) 1124.
33.M. Zhang, Z.-S. Jin, J.-W. Zhang, X.-Y. Guo, J.-J. Yang, W. Li, X.-D. Wang and Z.-J. Zhang. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotube H2Ti2O4(OH)2.” J. Mol. Catal. A 217 (2004) 203.
34.B.-D. Yao, Y.-F. Chan, X.-Y. Zhang, W.-F. Zhang, Z.-Y. Yang, and N. Wang. “Formation mechanism of TiO2 nanotubes.” Appl. Phys. Lett 82 (2003) 281.
35.B. Wen, C. Liu and Y. Liu “Controllable synthesis of one-dimensional single-crystalline TiO2 nanostructures” Chem. Lett. 34 (2005) 396
36.劉育成。『氧化鈦奈米管擔體金屬觸媒之製備及特性分析』博士論文,國立台灣大學化學系。台北,2004。
37.C.-H. Lin, S.-H. Chien, J.-H. Chao, C.-Y. Sheu, Y.-C. Cheng, Y.-J. Huang and C.-H. Tsai. “The synthesis of sulfated titanium oxide nanotubes.” Catal. Lett. 80 (2002) 153.
38.J.-N. Nian and H. Teng “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor” J. Phys. Chem. B 110 (2006) 4193.
39.H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song,and J. C. Zhao “Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions” J. AM. CHEM. SOC. 127 (2005) 6730.
40.蔡忠憲。『以氧化鈦奈米管為前驅物製作染料敏化太陽能電池之陽極電極』碩士論文,國立成功大學化工系。台南,2004。
41.B. Wen, C. Liu, and Y. Liu “Bamboo-Shaped Ag-Doped TiO2 Nanowires with Heterojunctions” Inorg. Chem. 44 (2005) 6503.
42.R.A. Spurr and H. Myers. Anal. Chem. 29 (1957) 760.
43.K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska. “Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity.” Pure & Appl. Chem. 57 (1985) 603.
44.C. H. Rhee and J. S. Lee. “Preparation and Characterization of Titanium-Substituted MCM-41” Catal. Today 38 (1997) 213.
45.K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, “Characterization of Self-Standing Ti-Containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of CO2 with H2O” Catal. Today 74 (2002) 241.
46.A. Mills and J. Wang. “Photobleaching of methylene blue sensitized by TiO2: an ambiguous system?” J. Photochem. Photobio. A 127 (1999) 123.
47.U. Balachandran and N.G. Eror. “Raman-spectra of titanium-dioxide.” J. Solid State Chem. 42 (1982) 276.
48.Y.-C. Liou, M.-C. Kuo and S.-H. Chien, in The 21st Taiwan Symposium on Catalysis and Reaction Engineering & The 3rd Conference of the Indo-Pacific Catalysis Association, P-II-30, Taipei, Taiwan (2003). “Formation and Characterization of Pt/TiO2 Nanotubes Catalysts”
49.J. C.S. Wu , Y.-T. Cheng “In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation” J. Catal. 237 (2006) 393.
50.Y. V. Kolen’ko, K. A. Kovnir, A. I. Gavrilov, A. V. Garshev, J. Frantti, O. I. Lebedev, B. R. Churagulov, G.Van Tendeloo, and M. Yoshimura “Hydro- thermal Synthesis and Characterization of Nanorods of Various Titanates and Titanium Dioxide ” J. Phys. Chem. B 110 (2006) 4030.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32749-
dc.description.abstract本研究以水熱法製備氧化鈦奈米管,再將之置於酸溶液中進行相轉變製得anatase及rutile純相或混晶相二氧化鈦光觸媒。兩晶相的比例可藉由改變處理溫度及酸濃度達到有效的調控。製得樣品以X光繞射光譜(XRD)、拉曼光譜(Raman)、高解析穿透式電子顯微鏡(HRTEM)、氮氣等溫吸附脫附、X光吸收光譜(XAS)、擴散反射式紫外線-可見光光譜(UV-vis)、傅立葉轉換紅外線光譜(FT-IR)及原子吸收光譜(AAS)等鑑定分析其結構及組成特性。觸媒的光催化活性以亞甲基藍脫色反應評估。
以水熱法製得的氧化鈦奈米管呈多層管壁(層間距約0.8 nm)及尾端開口,其外徑約8至9 nm,而內徑約4至5 nm。研究結果顯示奈米管在較低的反應溫度時,需要較高的HNO3濃度才能進行相轉換。在特定溫度下,anatase/rutile比值隨酸濃度升高而下降。以HCl或H2SO4處理奈米管的相轉換結果和以相同濃度HNO3處理所得產物極為類似。在稀酸處理中,奈米管結構相轉換成anatase的速率高於相轉換成rutile的速率。相較於氧化鈦奈米管,以溶劑水熱法製得的氧化鈦奈米棒在酸溶液中的相轉換需要較高的處理溫度及酸濃度。
亞甲基藍脫色反應顯示氧化鈦奈米管及奈米棒經酸處理相轉換成anatase及rutile純相或混晶相二氧化鈦後,其光催化活性有顯著的提升。以氧化鈦奈米管為前趨物,經過80 oC 0.05 M 硝酸處理24小時所製得的觸媒具有純anatase晶相及最高表面積(192 m2/g),在各樣品間表現最佳的光催化活性。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T04:14:44Z (GMT). No. of bitstreams: 1
ntu-95-R93223063-1.pdf: 5395597 bytes, checksum: 39afce91d74a6ba20a3e136e5c4e746c (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要 …………………………………………………………………. I
Abstract…………………………………………………………... II
目錄 ………………………………………………………………. III
圖索引 ……………………………………………………………... V
表索引 ………………………………………….……........... IX
第一章 緒論 ………………………………………….……….. - 1 -
1.1 二氧化鈦的簡介 ……………………….…............. - 1 -
1.2 混相二氧化鈦的文獻回顧……………………………….. .- 5 -
1.3 氧化鈦奈米管的文獻回顧 ………….……............. - 7 -
1.4 研究動機 ……………………………….…............ - 13 -
第二章 實驗方法 ……………………………………………… - 16 -
2.1 藥品、氣體及儀器 ……………………….…………….. - 16 -
2.2 觸媒製備 ………………………………….……………… - 18 -
2.2.1 氧化鈦奈米管Dnt 及Jnt 之製備 ………..………... - 18 -
2.2.2 氧化鈦奈米棒Tnr 之製備 …….……………………… - 18 -
2.2.3 相轉換酸處理 ……………….………………………… - 20 -
2.3 觸媒之特性分析 ………………………............... - 23 -
2.3.1 原子吸收光譜 (AAS) …………………............. - 23 -
2.3.2 X 射線繞射光譜 (XRD) ………………............. - 23 -
2.3.3 拉曼光譜 (Raman) ……………………………………. - 24 -
2.3.4 高解析穿透式電子顯微鏡 (HRTEM) ………………... - 25 -
2.3.5 氮氣等溫吸附脫附 …………………………………... - 25 -
2.3.6 擴散反射式紫外線-可見光光譜 (UV-vis) ………… - 27 -
2.3.7 傅立葉轉換紅外線光譜 (FT-IR) ………………….. - 27 –
2.3.8 X 光吸收光譜(XAS)..………………………………… - 27 -
2.4 亞甲基藍光脫色反應 ….……..…………..…………… - 28 -
第三章 結果與討論 ……………………..………………….. - 32 -
3.1 氧化鈦奈米管Dnt ……………...……………………… - 32 -
3.2 氧化鈦奈米管Dnt 的相轉換 ……………….......... - 38 -
3.2.1 硝酸濃度的影響 ……………………………………… - 38 -
3.2.2 酸源的影響 …………………………………………… - 49 -
3.2.3 酸處理時間的影響 …………………………………… - 52 -
3.2.4 酸處理溫度的影響 …………………………………… - 54 -
3.2.5 相轉換機制的討論………………...………………… - 61 -
3.3 氧化鈦奈米管Jnt 的相轉換 ………………………….. - 64 -
3.4 氧化鈦奈米棒Tnr 的相轉換…………………………... - 67 -
3.5 亞甲基藍脫色反應測試結果 ………………………….. - 71 -
第四章 結論 …………………………………………………. - 81 –
第五章 未來展望與建議……………………………………… - 82 –
參考文獻 …………………………………………………….. - 83 -
附錄A Dnt 的特性分析……….…………………… ……... - 87 -
附錄B JCPDS-TiO2 及sodium titanate 之XRD 標準圖譜… - 93 -
dc.language.isozh-TW
dc.subject相轉換zh_TW
dc.subject氧化鈦奈米管zh_TW
dc.subject二氧化鈦光觸媒zh_TW
dc.subject酸處理zh_TW
dc.subject氧化鈦奈米棒zh_TW
dc.subjectacid treamenten
dc.subjectphase transformationen
dc.subjecttitania nanoroden
dc.subjecttitania nanotubeen
dc.subjecttitanium dioxde photocatalysten
dc.title以氧化鈦奈米管製備混相二氧化鈦光觸媒zh_TW
dc.titlePreparation of Mixed-phase Titanium Dioxide Photocatalysts from Titania Nanotubeen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭淑芬,楊思明
dc.subject.keyword氧化鈦奈米管,氧化鈦奈米棒,相轉換,酸處理,二氧化鈦光觸媒,zh_TW
dc.subject.keywordtitania nanotube,titania nanorod,phase transformation,acid treament,titanium dioxde photocatalyst,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved