請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32741完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞 | |
| dc.contributor.author | Chu-Yun Peng | en |
| dc.contributor.author | 彭楚芸 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:14:34Z | - |
| dc.date.available | 2011-08-01 | |
| dc.date.copyright | 2011-08-01 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-07-28 | |
| dc.identifier.citation | [1] Ahmed, G. P., and P. Daly, 'Finite-element method for inhomogeneous waveguide,' Inst. Elec. Eng. Proc.-J, vol. 116, pp. 1661-1664, 1969.
[2] Ando, T., H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, 'Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,' J. Lightwave Technol., vol. 20, pp. 1627V-1634, 2002. [3] Baken, N. H. G., M. B. J. Diemeer, J. M. V. Splunter, and H. Blok, 'Computational modeling of diffused channel waveguides using a domain integral equation,' J. Lightwave Technol., vol. 8, pp. 576-586, 1990. [4] Bierwirth, K., N. Schulz, and F. Arndt, 'Finite-difference analysis of rectangular dielectric waveguides by a new finite diRerence method,' J. Lightwave Technol., vol. 34, pp. 1104-1113, 1986. [5] B¶erenger, J.-P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185-200, 1994. [6] Cardenas, J., C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, 'Low loss etchless silicon photonic waveguides,' Opt. Express, vol. 17, pp. 4756-4757, 2009. [7] Cendes, Z. J., and P. Silvester, 'Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis,' IEEE Trans. Microwave Theory Tech., vol.18, pp. 1124-1131, 1970. [8] Chew, W. C., and W. H.Weedom, 'A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinate,' IEEE Microwave Opt. Technol. Lett., vol. 7, pp. 599-604, 1994. [9] Chiang, P. J., C. P. Yu, and H. C. Chang, 'Robust calculation of chromatic dispersion coefficients of optical fibers from numerically determined effective indices using Chebyshev-Lagrange interpolation polynomials,' J. Lightwave Technol., vol. 24, 2006. [10] Ditkowski, A., J. S. Hesthaven, and C. H. Teng, 'Modeling dielectric interfaces in the FDTD-method: A comparative study,' in 2000 Process in Electromagnetics Research (PIERS 2000) Proceedings, Cambridge, Massachusetts, 2000. [11] Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, 'Staircase-free finite-difference time-domian formulation for general materials in complex geometries,' IEEE, Trans. Antennas Propagat., vol. 49, pp. 749-756, 2001. [12] Duguay, M. A., Y. Kokubun, T. L. Koch, and L, Pfeiffer, 'Antiresonant reflecting optical waveguides in SiO2-Si mutilayer structures,' Appl. Phys. Lett., vol. 49, pp. 13-15, 1986. [13] Grant, J. C., J. C. Beal, and N. J. P. Frenette, 'Solving certain leaky waveguides with lossless, simply bounded finite element modeling,' IEEE Photon. Technol. Lett., vol. 2, pp. 890-892, 1990. [14] Green, M., and S. J. Madden, 'Low loss nematic liquid crystal cored fiber waveguides,' Appl. Opt., vol. 28, pp. 5202-5203, 1989. [15] Hadley, G. R., 'High-accuracy finite-difference equations for dielectric waveg- uide analysis II: Dielectric corners,' J. Lightwave Technol., vol. 20, pp. 1219-1231, 2002. [16] Knight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and S. J. Russell, 'Anomalous dispersion in photonic crystal fiber,' IEEE Photon. Technol. Lett., vol. 12, pp. 817-819, 2000. [17] Konesen, A., T. K. Gaylord, and M. G. Moharam, 'Hybrid guided modes in uniaxial dielectric planar waveguides,' J. Lightwave Technol., vol. 6, pp. 1083-1104, 1988. [18] Kokubun, Y., T. Baba, and T. Sakaki, 'Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,' Electron. Lett., vol. 17, pp. 892-893, 1986. [19] Kubica, J., D. Uttamchandani, and B. Culshaw, 'Modal propagation within ARROW waveguides,' Opt. Commun., vol. 78, pp. 133-136, 1990. [20] Lee, J. F., D. K. Sun, and Z. J. Cendes, 'Full-wave analysis of dielec- tricwaveguides using tangential vector finite elememts,' IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262-1271, 1991. [21] Li, Y. F., K. Iizuka, and J. W. Y. Lit, 'Equivalent-layer method for optical waveguides with a multiple quantum well structure,' Opt. Lett., vol. 17, pp. 273-275, 1992. [22] Lin, H. Y., R. B. Wu, and H. C. Chang, 'An effecient algorithm for determining the dispersion characteristics of single-mode optical fibers,' J. Lightwave Technol., vol. 10, pp. 705-711, 1992. [23] Lui, M. L., and Z. Chen, 'A direct computation of propagation costant using compact 2-D full-wave eigen-based finite-difference frequency-domain technique,' in Proc. 1999 Int. Conf. Computational Electromagnetics Applications, pp. 78-81, 1999. [24] LÄusse P., P. Stuwe, J. SchÄule, and H.-G. Unger, 'Analysis of vectorial mode fields in optical waveguides by a new finite difference method,' J. Lightwave Technol., vol. 12, pp. 487-494, 1994. [25] LÄusse P., K. Ramm, and H.-G. Unger, 'Vectorial eigenmode calculation for anisotropic planar optical waveguides,' Electron. Lett., vol. 32, pp. 38-39, 1996. [26] Mitchell, A. R., and D. F. Griffths, The Finite Difference Method in Partical Differential Equations. New York: Wiley, 1987. [27] Mittra, R., and U. Pekel, 'A new look an the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,' IEEE Microwave Guid Wave Lett., vol. 5, pp. 84{86, 1995. [28] Mogilevtsev, D., T. A. Birks, and P. S. J. Russell, 'Group-velocity dispersion in photonic crystal fibers,' Opt. Lett., vol. 23, pp. 1662-1664, 1998. [29] Ohke, S., T. Umeda, and Y. Cho, 'Equivalent-layer method for optical waveg- uides with a multiple quantum well structure: comment,' Opt. Lett., vol. 18, pp. 1870{1872, 1993. [30] Pekel, ¶'U., and R. Mittra, 'A finite-element method frequency-domain application of the perfectly matched layer (PML) concept,' Microwave Opt. Technol. Lett., vol. 9, pp. 117-122, 1995. [31] Petrov, D. V., and E. A. Kolosovsky, 'Radiation modes of an anisotropic optical waveguide with arbitrary refractive index profile,' Optics Communications, vol. 124, pp. 240-243, 1996. [32] Rahman, B. M. A., and J. B. Davies, 'Finite-element analysis of optical and microwave waveguide problems,' IEEE. Trans. Microwvae Theory Tech., vol. 32, pp. 20-28, 1984. [33] Rappaport, C. M., 'Perfectly matched absorbing boundary conditions based on aistropic lossy mapping of space,' IEEE Microwave Guided Wave Lett., vol. 5, pp.90{92, 1995. [34] Ray, B., and G. W. Hanson, 'Some effects of anisotropy on planar antiresonant reflecting optical waveguides,' J. Lightwave Technol., vol. 14, pp. 202-208, 1996. [35] Saini, M., and E. K. Sharma, 'Equivalent refractive index of MQW waveguides,' IEEE J. Quntum Electron., vol. 32, pp. 1383-1390, 1996. [36] Saitoh, K., and M. Koshiba, 'Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,' J. Lightwave Technol., vol. 19, pp. 405-413, 2001. [37] Selleri, S., L. Vincetti, and M. Zoboli, 'Full-vector ‾nite-element beam propagation method for anisotropic optical device analysis,' IEEE J. Quntum Electron., vol. 36, pp. 1392-1401, 2000. [38] Sharma, A., and S. Banerjee, 'Chromatic dispersion in single mode fibers with arbitrary index profiles: A simple method for exact numerical evaluation,' J. Lightwave Technol., vol. 7, pp. 1919{1923, 1989. [39] Sharma, E. K., A. Sharma, and I. C. Goyal, 'Propagation characteristics of single mode optical fibers with arbitrary index profiles: A simple numerical approach,' IEEE J. Quntum Electron., vol. QE-18, pp. 1484-1489, 1982. [40] Sphicopoulos, T., V. Teodoridis, and F. E. Gardiol, 'Dyadic Green function for the electromagnetic field in multilayered isotropic media: an operator ap- proach,' Inst. Elec. Eng. Proc.-J., vol. 132, pp. 329{338, 1985. [41] Stern, M. S., 'Semivectoral polarized finite difference method for optical waveguides with arbitrary index profiles,' Inst. Elec. Eng. Proc.-J., vol. 135, pp. 56-63, 1988. [42] Taflove, A., and S. C. Hagness, Computational Electromagnetics: The Finite Difference Time Domain Method, Second Edition., Boston, MA: Artech House, 2000. [43] Teixeira, F. L. and W. C. Chew, 'General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,' IEEE Microwave Guided Wave Lett., vol. 8, pp. 223-225, 1998. [44] Trutschel, U., M. Cronin-Colomb, G. Fogarty, F. Lederer, and M. Abraham, 'Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,' IEEE Photon. Technol. Lett., vol. 5, pp. 336-339, 1993. [45] Trutschel, U., F. Ouellette, V. Delisle, M. A. Duguay, G. Fogarty, and F. Lederer, 'Polarization splitter based on antiresonant reflecting optical waveguides,' J. Lightwave Technol., vol. 13, pp. 239-243, 1995. [46] Xu, C. L., W. P. Huang, and S. K. Chaudhuri, 'Efficient and accurate vector mode calculations by beam propagation method,' J. Lightwave Technol., vol. 11, pp. 1209-1215, 1993. [47] Xu, C. L., W. P. Huang, M. S. Stern, and S. K. Chaudhuri, 'Full-vectorial mode calculations by finite difference method,' Inst. Elec. Eng. Proc.-J., vol. 141, pp. 281-286, 1994. [48] Xu, C. L., W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, 'A full-vectorial beam propagation method for anisotropic waveguides,' J. Lightwave Technol., vol. 12, pp. 1926-1931, 1994. [49] Yee, K. S., 'Numerical solution of initial boundary value problems involing Maxwell's equations on isotropic media,' IEEE Trans. Antenna Propagat., vol. 14, pp. 302-307, 1966. [50] Yu, C. P., and H. C. Chang, 'Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,' Opt. Express, vol. 12, pp. 1397-1408, 2004. [51] Yu, C. P., and H. C. Chang, 'Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,' Opt. Express, vol. 12, pp. 6165V-6177, 2004. [52] Zhu. Z., and T. G. Brown, 'Full-vectorial finite-difference analysis of microstructured optical fibers,' Opt. Express, vol. 10, pp. 853-864, 2002 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32741 | - |
| dc.description.abstract | 本論文首先使用有限差分頻域法分析各向同性光波導,包括平板波導、埋入式方形波導、脊形波導和光纖,並引入完美匹配吸收層作為計算區域外圍的吸收邊界。此外,提出以全向量有限差分頻域法推得標準特徵方程式,以之分析各向異性平板型的光波導,並引入適用各向異性材料的完美匹配吸收層,因此得以分析洩漏式的波導。本研究分析各向異性抗共振反射光波導和各向異性平板光波導,並且準確地計算出該波導模態的有效折射係數和場形分布。為了了解這些波導的傳播特性,本研究提出在不同光軸指向下的數值結果。
最後,以全向量有限差分頻域法推得分析三維各向異性光波導的標準特徵方程式。以纖芯充填液晶的光纖為例,計算在不同的光軸指向下,基模態的有效折射係數和對應的色散係數曲線,並討論模態傳播特性。 | zh_TW |
| dc.description.abstract | In this thesis, the finite-difference frequency-domain (FDFD) method is first utilized to analyze isotropic optical waveguides, such as slab waveguides, channel aveguides, rib waveguides, and optical fibers. The perfectly matched layer (PML) is employed as the absorbing boundary of the computing window in the FDFD solver.
Then, a full-vectorial FDFD method based standard eigenvalue algorithm is developed for the analysis of anisotropic planar optical waveguides. The PML for anisotropic media is incorporated into the formulation as the absorbing boundary condition so that leaky waveguides can be treated. Adopting this method, anisotropic planar waveguides including anisotropic antiresonant reflecting optical waveguides (ARROWs) and anisotropic slab waveguides are investigated. The effective indices and the field distributions of allowed guided modes on such waveguides can be accurately calculated. Propagation characteristics of these waveguides are studied and numerical results are shown for different optic-axis orientations. Finally, a full-vectorial FDFD method based standard eigenvalue algorithm for the analysis of three-dimensional anisotropic optical waveguides is derived. Using the full-vectorial mode solver, the effective indices and the corresponding chromatic dispersion coeffcient curves for di®erent optic-axis orientations of fundamental guided modes on a hollow core fiber filled with liquid crystal (LC) are calculated. Also, the propagation behavior of the modes on the LC-core fiber is discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:14:34Z (GMT). No. of bitstreams: 1 ntu-99-R97942008-1.pdf: 6319851 bytes, checksum: 356795d3af250329b28c3fb05ff8455f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Numerical Schemes for the Analysis of Optical Waveguides . . . . . . . . . . . . . . . . . . . . . . . .1 1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Chapter Outline . . . . . . . . . . . . .. . . . . . . . . . . . . 3 2 The Finite-Difference Frequency-Domain Method for IsotropicWaveguides . .. . . . . . . . . . . . . . . . . . 5 2.1 Mode Solvers for 2-D Problems . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 The TE Polarized Wave . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 The TM Polarized wave . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Mode Solvers for 3-D Problems . . . . . . . . . . . . . . . . . . . . . .. .. .9 2.3 FDFD Method with Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Approximation at Dielectric Interfaces . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 Stair-Case Approximation . . . . . . . . . . . . . . . . . . . . . .16 2.4.2 Index Average scheme . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.4.3 Proper Boundary Condition Matching . . . . . . . . . . . . . . . . . . . . . . . . .17 2.5 Slab Waveguides . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 Channel Waveguides . . . . . . . . . . . . .. . . . . . . . . . . 20 2.7 Rib Waveguides . . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 The Finite-Difference Frequency-Domain Method for Anisotropic Planar Waveguides . . . . . . . . . . . . . . . . . . . . . . . .50 ii 3.1 Full-Vectorial Waveguide Mode Solver for 2-D Anisotropic Planar Waveguides . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Anisotropic ARROW Waveguides . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Anisotropic Slab Waveguides . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 The Effective Indices of the Guided Modes Versus the Optic-Axis Orientation . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.2 The Effect of Changing Mode Pro‾les Along the Propagation Direction . . . . . . . .. . . . . . . . . . . . . . . . 62 4 The Finite-Difference Frequency-Domain Method for Anisotropic Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.1 Full-Vectroial Waveguide Mode Solver for 3-D Anisotropic Waveguides . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 Chromatic Dispersion of a Silica-Filled Metallic Rectangular Waveguide . . . . . . . . . . . . . . . . . . . . . . . 103 4.3 Chromatic Dispersions of Liquid Crystal Hollow Core Fibers . . . . . . . . . . . . . .. . . . . . . . . . .104 4.4 Propagation Behaviors of the Hybrid Guided Modes of Liquid Crystal Hollow Core Fibers . . . . . . . . . . . . . .. . . . . . . . . . .105 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . .118 | |
| dc.language.iso | en | |
| dc.subject | 各向異性光波導 | zh_TW |
| dc.subject | 有限差分頻域法 | zh_TW |
| dc.subject | 完美匹配吸收層 | zh_TW |
| dc.subject | 各向同性光波導 | zh_TW |
| dc.subject | isotropic optical waveguides | en |
| dc.subject | anisotropic optical waveguides | en |
| dc.subject | Finite-difference frequency-domain (FDFD) method | en |
| dc.subject | perfectly matched layer | en |
| dc.title | 各向異性光波導之有限差分頻域特徵模態分析 | zh_TW |
| dc.title | Finite-Difference Frequency-Domain Eigenmode Analysis
of Anisotropic Optical Waveguides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊雄,邱奕鵬 | |
| dc.subject.keyword | 有限差分頻域法,完美匹配吸收層,各向同性光波導,各向異性光波導, | zh_TW |
| dc.subject.keyword | Finite-difference frequency-domain (FDFD) method,perfectly matched layer,isotropic optical waveguides,anisotropic optical waveguides, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
