Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32739
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉春櫻
dc.contributor.authorYu-Wen Yangen
dc.contributor.author楊裕文zh_TW
dc.date.accessioned2021-06-13T04:14:32Z-
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation1. Strain, H. H. J. Am. Chem. Soc. 1939, 61, 1292.
2. Pretourius, V., Hopkins, B. J.,Schieke, J. D., J. Chromatogr. 1974, 99,23.
3. Kapinissi-Christodoulou, C. P.; Zhu, X. F., Electrophoresis 2003, 24, 3917.
4. Lynen, F.,Villiers, A., Eelectrophoresis 2005, 28, 1539.
5. Tong, D.X., Bartle, K. D., Clifford, A. A., J. Microcol. Sep. 1994, 6, 249.
6. Stol, R., Mazereeuw, M. Tjaden, U. R., Van der Greef, J. J. Chromatogr. A 2000, 873, 293.
7. Reynolds, K. J., Maloney, T.D.,. Fermier, A. M ., Col_n, L. A., Analyst 1998, 123, 1493.
8. Maloney, T. D., Col_n, L. A., Electrophoresis 1999, 20, 2360.
9. Smith, N., Evans, M. B., J.Chromatogr. A 1999, 832, 41.
10. Chen, Y., Gerhardt, G., Anal. Chem. 2000, 72, 610.
11. Welsch, T., Schmid, M., Bauml, F., Electrophoresis 1999, 22, 438.
12. Chen, J. R., Dulay, M. T., Zare, R. N., Anal. Chem. 2000, 72,1224.
13. Knox, J. H., Grant, I. H., Chromatographia 1991, 24, 317.
14. Asiaie, R., Huang, X., Farnan, D., J. Chromatogr. A 1998, 806, 251.
15. Dullay, M. T., Kulkarni, R. P., Zare, R. N., Anal. Chem. 1998, 70, 5103.
16. Palm, A., Novotny, M. V., Anal. Chem. 1997, 69, 4499.
17. Peterson, D. S., Rohr, T., Svec, F., Frechet, J. M. J., Anal. Chem. 2002, 74, 4081.
18. He, B., Tait, N., Regnier, F., Anal. Chem. 1998, 70, 3790.
19. Ishizuku, N., Minakuchi, H., Nakanishi, K., Anal. Chem. 2000, 72, 1275.
20. Gusev, I., Huang, X., Horvath, C., J. Chromatogr. A 1999, 855, 273.
21. Garner, T. W., Yeung, E. S., J. Chromatogr. 1993, 640, 397.
22. Baryla, N. E.; Melanson, J. E.; McDermott, M. T.; Lucy, C. A. Anal. Chem. 2001, 73, 4558.
23. Graul, T. W.; Schlenoff, J. B. Anal. Chem. 1999, 71, 4007.
24. Cunliffe, J. M.; Baryla, N. E.; Lucy, C. A. Anal. Chem. 2002, 74, 776.
25. Riekkola, M. L., Bo, T., Wiedmer, S. K., Electrophoresis 2006, 27, 1502.
26. Warner, I. M., Kamande, M. W., Electrophoresis 2003, 24, 945.
27. Haddad, P. R., Zhang, S., Macka, M., Electrophoresis 2006, 27, 1069.
28. Charvatova, J., Kasicka, V., Deyl, Z., J. Chromatogra. A 2003, 990, 111.
29. Zhang, J., Horvath, C. Electrophoresis 2003, 24, 115.
30. Huang, T., Mi, J. Q., J. Sep. Sci. 2006, 29, 277.
31. Guo, Y., Colon, L. A., Anal. Chem. 1995, 67, 2511.
32. Rodriguez, S. A., Colon, L. A., Anal. Chem. Acta 1999. 397, 207.
33. Hayes, J. D., Malik, A., Anal. Chem. 2001, 73, 987.
34. Zhao, Y., Zhao, R., Liu, G., Electrophoresis 2002, 23, 2990.
35. Pesek, J. J., Matyska, M. T., J. Chromatogra. A, 1997, 763, 307.
36. Matyska, M. T., Pesek, J. J., Anal. Chem. 2001, 73, 6116.
37. Matyska, M. T., Pesek, J. J., Anal. Chem. 1999, 71, 5508.
38. Baraton, M. I. Synthesis, functionalization and surface treatment of nanoparticles American Scientific Publishers 2003, Chapter 8.
39. Venz, P. A., Frost, R. L., Kloprogge, J. T., J. Non-Crystalline Solids 2000, 95, 112.
40. Nakajima, T., Matsuda, H., Analytical sciences 1990, 6, 911.
41. McQillsn, A. J., Connor, P. A., Langmuir 1999, 15, 2916.
42. McQillsn, A. J., Ronson, T. K., Langmuir 2002, 18, 5019.
43. Nelson, B. P., Candal, R.; Corn, R. M., Anderson, M. A., Langmuir 2000, 16, 6094.
44. Kataoka, S.; Gurau, M. C.; Albertorio, F.; Holden, M. A.; Lim, S.-M.; Yang, R. D.; Cremer, P. S., Langmuir 2004, 20, 1662.
45. Abdullah, M., Low, G. K. C., Matthews, R.W., J. Phys. Chem.; 1990, 94, 6820.
46. Moulton, S. E., McQuillan, A. J., Colloid and surfaces A 2003, 220, 159.
47. Fujishma, A., Honda, A., Nature 1972, 238, 37.
48. O’Regan, B., Gratzel, M., Nature 1991, 353, 737.
49. Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes, Nano Lett. 2006, 6, 215.
50. Areva, S.,, Peltola, T, Sailyonja, E., Chem. Mater. 2002, 14, 1614.
51. Rice, C. V., Wickham, J. R. J. Am. Chem. Soc. 2005, 127 , 856.
52. http://www.sdnano.com/paper/tio202.htm
53. Sathatos, E., Lianos, P., Colloids and surface A 1999, 149, 49.
54. Hong, S. S., Lee, M. S., Hwang, H. S., Solar Energy Materials & Solar Cells 2003, 80, 273.
55. Wang, C. C., Ying, J. Y., Chem. Mater. 1999, 11, 3113.
56. Brinker, C. J., Scherer, G. W., Sol-gel Science : the physics and chemistry of sol-gel processing Academic Press 1990.
57. Livage, J., Henry, M., Sanchez, C., Prog. Solid State Chem. 1988, 18, 259.
58. Kawahara, M., Nakamura, H., Nakajima, T., Anal. Sci. 1989, 5, 763.
59. Trudinger, U., Muller, G., Unger, K. K., J. Chromatogra. 1990, 535, 111.
60. Tani, K., Suzuki, Y., Chromatographia 1994, 38, 291.
61. Tani, K., Suzuki, Y., J. Chromatogr. A 1996, 722, 129.
62. Tsai, P., Lee, C. S., J. Chromatogr. B 1994, 657, 285.
63. Fujimoto, C. Electrophoresis 2002, 23, 2929.
64. Feng, Y., Q., Xu, L., Shi, Z. G., J. Chromatogr. A 2004, 1028, 165.
65. Hsiesh, Y. L., Liu, C. P., Liu, C. Y., Electrophoresis 2005, 26, 4089.
66. Rundlof, T., Olsson, E., Wiernik, A., J. Agric. Food Chem. 2000, 48, 4381.
67. Catteral, F., Souquet, J. M., Cheynier, V., Enviro. Molecul. Mutagen., 2000, 35, 86.
68. Wu, P. F., Chang, T. A., Mutation Research-Fundamental and Molecular Mechanisms of Mutagesis 1998, 403, 29.
69. White, R. F. Virology 1979, 99, 410.
70. Delaney, T. P., Uknes, S., Vernooij, B., Science 1994, 266, 1247.
71 Malamy, J., Henning, J., Plant Cell 1992, 4, 359.
72. Krizkova, L., Nagy, M., Mutation Research-Genetic Toxicology and Environmental Mutagesis 2000, 469, 107.
73. Ong, C., Lee, B., J. Chromatogr. A 2000, 81, 39.
74. Arts, C. W., Van, D. P., J. Agric. Food Chem. 2000, 48, 1746.
75. Waterhouse, A. L., Donovan, J. L., J.Chromatogr. B. 1999, 726, 277.
76. Lee, M. J., Prabhu, S., Meng, X., Anal.Biochem. 2000, 279, 164.
77 .Wen, D., Liu, H., Di, H., J. Agric. Food Chem. 2005, 53, 6624.
78. Ong, C. N., Lee, B. L., J. Chromatogr. A. 2000, 881,439.
79. Apostolides, Z., Auccamp, J. P., J. Chromatogr. A. 2000, 876, 235.
80. Prasongsidh, B. C., Skurray, G. R., Food Chem 1998, 62, 355.
81. Arce, L., Rios, A., Valcarcel, M., J. Chromatogr. A.1998, 827, 113.
82. Kuban, P., Sterbova, D., Electrophoresis 2006, 27, 1368.
83. Shiue, C. C., Liu, C. Y., J. Chinese Chemical Soc. 2001, 48, 1029.
84. Chiang, H. H., Shiue, C. C., Liu, C. Y., Instrum. Sci. Technol. 2002 , 30, 43.
85. Kamat, P. V., Flumiani, M., Dawson, A., Colloids and Surfaces A 2002, 202, 269.
86. Gunter, S., Nanoparticles 2000, Chapter 1.
87. Kawak, S. Y., Kim, S. H., Kim, S. S., Environ. Sci. Technol. 2001, 35, 2388.
88. Oliva, F. Y., Avalle, L. B., Journal of Colloid and Interface Science 2003, 261, 299.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32739-
dc.description.abstract本研究以二氧化鈦溶膠凝膠作為開管式毛細管電層析之靜相。首先,在pH 1.5 且冰浴 (4℃) 的情況下來水解titanium isopropoxide,然後將溫度升溫至50℃,溫度維持7小時,以進行縮合反應,所得的產物為穩定且透明的膠體溶液。此膠體溶液,加入0.32 mg/ml空間穩定劑 (polyethylene glycol),經減壓濃縮成較高濃度的膠體溶液。然後將其引入內徑為 50 μm 的毛細管中,在200℃ 下反應24小時,使毛細管管壁之矽純基與溶膠之鈦醇基進行縮合反應。經由電滲透流的測定,發覺在甲酸—Tris緩衝溶液中,管壁的等電點為pH 4.7,當pH 小於此值時,電滲透流為逆向;反之,則為正向。而在磷酸緩衝溶液下,因為磷酸分子會錯合在管壁上,所以電滲透流在pH 2.0以上恆為正向。將此二氧化鈦管柱應用於植物酚之分離,由研究發現其可用於 catechin 與 epicatechin 中性幾何異構物之分析,以分析電壓為15 kV,動相為磷酸緩衝溶液 (pH 9.0, 40 mM) 為最佳條件,平均理論板數為 3600 m-1;此管柱尚可用於分離植物酚類中的一些酸性分析物,如syringic acid、caffeic acid、salicylic acid 、p-coumaric acid 和 4-hydroxybenzoic acid。本研究選用甲酸/ Tris、EDTA 與磷酸緩衝溶液,改變 pH 值與緩衝溶液濃度等測試,發現動相會與分析物競爭管壁上之二氧化鈦而將分析物從靜相中交換出來,其分析之最佳條件為電壓 -20 kV,動相為EDTA 緩衝溶液 (pH 5.0, 40 mM),流析順序為salicylic acid > 4-hydroxybenzoic acid > syringic acid > p-coumaric acid > caffeic acid,平均理論板數為 3.2 × 104 m-1,RSD < 4%。綜合以上,本研究所製備之二氧化鈦塗佈管柱,可成功分離植物酚的幾何異構物與植物酚酸。zh_TW
dc.description.abstractIn this study, titanium dioxide nanoparticles as a stationary phase in open-tubular capillary electrochromatography (CEC) was prepared. The process has been done in the following way. First, titanium isopropoxide was hydrolyzed at the pH 1.5 (4℃), then the mixture was condensed by heating at 50℃ for 7 h. A stable, clear solution was obtained. PEG 8000 (0.32 mg/ml) was then added to the TiO2 colloidal solution and concentrated under vacuum at 50℃.The high-concentration solution was introduced into the capillary column by nitrogen, then put in the oven and reacted at 200℃ for 24 h. The step made the condensation reaction of TiO2 nanoparticles with silanol groups of fused-silica capillary. EOF property was investigated in a variety of buffer solutions : /formate/Tris, phosphate and EDTA/. With formate/Tris buffer, EOF reversal at pH below 4.7 and cathodic EOF at pH above 4.7 were indicated. With phosphate and EDTA, only cathodic EOF were indicated. This is because of phosphate and EDTA buffer arosed titanium complex and yield a negative charge layer on the surface of TiO2. The CEC performance of the column was tested with plant phenols and phenolic acids. When mobile phase in phosphate (40 mM, pH 9.0), applied voltage of 15 kV, two plant phenols which are diastereomers, (+)-(2R,3S)-catechin and (−)-(2R,3R)-epicatechin, could be baseline separated. With the same column at the mobile phase of EDTA (40mM, pH 5.0), applied voltage of 20 kV, five phenolic acids, syringic acid, caffeic acid, salicylic acid, p-coumaric acid and 4-hydroxybenzoic acid could be baseline separated, the average theorical plate is 3.2 × 104 m-1 and RSD < 4% with four measurements.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:14:32Z (GMT). No. of bitstreams: 1
ntu-95-R93223054-1.pdf: 2794770 bytes, checksum: 531d52f26bb63f825fa5f4fb8cbf159e (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要 A
英文摘要 B
目錄 C
圖目錄 G
表目錄 J
第一章 緒論 1
第一節 毛細管電層析簡介 1
1-1 前言 1
1-2 毛細管電層析原理 2
1-3 毛細管電層析管柱種類介紹 7
1-3.1 填充式管柱 7
1-3.2 整體式管柱 8
1-3.3 開管式管柱 8
第二節 二氧化鈦 15
2-1 二氧化鈦物理與化學性質 15
2-2 二氧化鈦應用 19
2-3 二氧化鈦奈米之製備 21
2-4 二氧化鈦為層析靜相之應用 24

第三節 分析物介紹 26
3-1 分析植物酚方法 28
第四節 研究動機 30
第二章 實驗部分 32
第一節 實驗儀器 32
第二節 實驗試藥 34
2-1 管柱製備 34
2-2 緩衝溶液 34
2-3 分析樣品 35
第三節 二氧化鈦奈米粒子合成與性質鑑定 36
3-1 二氧化鈦奈米粒子合成步驟 36
3-2 二氧化鈦奈米粒子性質鑑定 36
第四節 毛細管靜相製備與性質鑑定 37
4-1 毛細管前處理 37
4-2 二氧化鈦管柱之製備 37
4-3 二氧化鈦管柱之保存 37
第五節 毛細管電層析之實驗操作 38
5-1 藥品配製 38
5-2 毛細管電層析流程 38
5-3 電滲透流測試 39
第三章 結果與討論 41
第一節 二氧化鈦膠體粒子之製備與鑑定 41
1-1 二氧化鈦膠體粒子之製備 41
1-2 二氧化鈦膠體粒子之性質鑑定 41
1-3 改變前驅物濃度 42
1-4 穿透式電子顯微鏡鑑定 46
第二節 二氧化鈦塗佈管柱之製備 47
2-1 毛細管內部前處理 47
2-2 二氧化鈦膠體粒子濃縮 47
2-3 不同濃縮液濃度對塗佈的影響 48
2-4 管柱電滲流測定與動相組成之探討 53
2-4.1 甲酸及 Tris 緩衝溶液 54
2-4.2 磷酸與 EDTA 緩衝溶液 55
第三節 毛細管電層析之應用 59
3-1 前言 59
3-1.1 磷酸緩衝溶液 pH 值之影響 60
3-1.2 動相濃度影響 62
3-2 酸性分子之分離 70
3-2.1 動相組成影響-甲酸及 Tris 緩衝溶液 73
3-2.2 緩衝溶液的修飾劑 77
3-2.3 動相組成影響-EDTA 緩衝溶液 81
3-2.4 動相濃度影響 82
第四章 結論 93
參考文獻 95
Fig. 1-1. Flow profile driven by pressure and by EOF.----------------------4
Fig. 1-2 .Sterns Model and ζ potential.-----------------------------------------5
Fig. 1-3. Development of the electroosmotic flow.---------------------------6
Fig. 1-4. Structure of polyelectrolyte multilayer.----------------------------13
Fig. 1-5. Steps in the formation of a supported phospholipid bilayer.----13
Fig. 1-6. Porphyrin binding in the surface of capillary.--------------------14
Fig. 1-7. Steps of BSA binding in the Porous-layer.-----------------------14
Fig. 1-8. Structures of TiO2 monocrystal and crystals.---------------------17
Fig. 1-9. Proposed hydroxyl groups on hydrolysate surfaces.------------18
Fig. 1-10. Phosphate adsorption onto the surface of TiO2.----------------18
Fig. 1-11. The relationship between α value and pH of TiO2.------------18
Fig. 1-12. Structures of plant phenol.----------------------------------------31
Fig. 2-1. Homemade capillary washing kit.---------------------------------40
Fig. 2-2. Capillary filling and washing kit.----------------------------------40
Fig. 3-1. The MO structure of different molecular system.----------------43
Fig. 3-2. Absorption spectrum of TiO2 NPs with 10% TIP precursor.---43
Fig. 3-3. Absorption of TiO2 NPs at different reaction time.--------------44
Fig. 3-4. Absorption of TiO2 NPs at different reaction temperature.-----44
Fig. 3-5. Absorption spectrum of TiO2 NPs with 20% TIP precursor. --45
Fig. 3-6. Absorption spectrum of TiO2 NPs with 30% TIP precursor. --45
Fig. 3-7. TEM of TiO2 NPs synthesized from the sol-gel method.-------46
Fig.3-8. TEM of concentrated TiO2 NPs. -----------------------------------52
Fig.3-9. Electroosmotic mobility of different columns.-------------------57
Fig.3-10. (a) Electroosmotic mobility of TiO2 NPs columns (formate/
Tris buffer) (b) The relationship between α value and pH.--58
Fig. 3-11. Electrochromatographic separation of plant phenols
at acidic condition.-------------------------------------------------63
Fig.3-12. Electrochromatographic separation of
plant phenols at basic condition.---------------------------------64
Fig. 3-13. Electropherograms of plant phenols at
different pH value.-------------------------------------------------65
Fig. 3-14. Electropherograms of plant phenols at
different buffer concentration.-------------------------------------66
Fig.3-15.Comparison separation of plant phenols with
different columns.---------------------------------------------------67
Fig. 3-16. Separation of plant phenols under various concentration
of phosphate buffer.------------------------------------------------68
Fig.3-17. Electrochromatographic separation of phenolic acids
at formate buffer.----------------------------------------------------78
Fig. 3-18. Electrochromatographic separation of phenolic acids at
formate /Tris buffer.-----------------------------------------------79
Fig. 3-19. Electrochromatographic separation of phenolic acids at
different amount of ethanol.--------------------------------------80
Fig. 3-20. Electrochromatographic separation of phenolic acids
at EDTA buffer injected from negative end.-------------------84
Fig. 3-21. Electrochromatographic separation of phenolic acids
at EDTA buffer injected from positive end -------------------85
Fig. 3-22. Electrochromatographic separation of phenolic acids
at phosphate buffer. -----------------------------------------------86
Fig. 3-23. Electrochromatographic separation of phenolic acids
at EDTA buffer.----------------------------------------------------87
Fig. 3-24. Separation efficiencies of phenolic acids under various
concentration of EDTA buffer.-----------------------------------91
表目錄
Table 3-1. Concentration of TiO2 after vacuum distillation of 1-propanol---------------------------------------------------------50
Table 3-2. Stability of TiO2 prepared with different concentration of precursor-----------------------------------------------------------50
Table 3-3. Effect of the column preparation on the EOF mobility------51
Table 3-4. Separation efficiencies of plant phenols under various pH of phosphate buffer---------------------------------------------------69
Table 3-5. Retention time repeatability in the CEC separation
of plant phenols----------------------------------------------------69
Table 3-6. Effective charge of plant phenols--------------------------------71
Table 3-7. Relative mobility of phenolic acids------------------------------72
Table 3-8. Some possible reactions between the surface of TiO2 NPs and organic functional groups-----------------------------------------74
Table 3-9. Retention time(min) of phenolic acids under various pH
Table 3-10. Separation efficiencies of phenolic acids under
various pH of EDTA buffer-------------------------------------89
Table 3-11. Separation efficiencies of phenolic acids under
various pH of EDTA buffer-------------------------------------90
Table 3-12. Retention time repeatability in the CEC separation
of phenolic acids injected from negative end-----------------92
Table 3-13. Retention time repeatability in the CEC separation
of phenolic acids injected from positive end------------------92
dc.language.isozh-TW
dc.subject二氧化鈦zh_TW
dc.subjectCECen
dc.title二氧化鈦塗佈管柱之製備及其以毛細管電層析分析植物酚類之應用zh_TW
dc.titleTitanium dioxide sol-gel coated column for the capillary electrochhromatographic separation of plant phenolsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏國佐,王書蘋
dc.subject.keyword二氧化鈦,zh_TW
dc.subject.keywordCEC,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved