Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福
dc.contributor.authorKe-Gang Wenen
dc.contributor.author文克剛zh_TW
dc.date.accessioned2021-06-13T04:14:19Z-
dc.date.available2014-08-01
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation[1] U.S. Energy Information Administration (EIA). (2011, April). The Annual Energy Outlook 2011 [online] Available:http://www.eia.gov/forecasts/aeo/.
[2] BP. (2011, June). The BP Statistical Review of World Energy 2011[online] Available:http://www.bp.com/statisticalreview.
[3] National Renewable Energy Laboratory (NREL). Graph demonstrates the state of photovoltaics at the early of 2011 [online] Available:http://www.nrel.gov/.
[4] A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, “Material and Solar Cell Research in Microcrystalline Silicon”, Sol. Energy Mater. Sol. Cells 78, 1-4, 469 (2003).
[5] A. G. Aberle, “Thin-film Solar Cells”, Thin Solid Films 517, 17, 4706 (2009).
[6] M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Dauke, “Multi- Junction III–V Solar Cells : Current Status and Future Potential”, Solar Energy 79, 1, 78 (2005).
[7] B. O’Regan, M. Gratzel, “A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature 353, 737 (1991).
[8] S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. Da Fre, P. Rubino, C. Chone, G Larramona, C. A. Bignozzi, “Sensitization of Nanocrystalline TiO2 with Black Absorbers Based on Os and Ru Polypyridine Complexes”, J. Am. Chem. Soc. 127, 15342 (2005).
[9] L. Spiccia, G. B. Deacon, C. M. Kepert, “Synthetic Routes to Homoleptic and Heterolepticruthenium(II) Complexes Incorporating Bidentateimine Ligands”, Coord. Chem. Rev. 248, 1329 (2004).
[10] R. Argazzi, N. Y. M. Iha, H. Zabri, F. Odobel, C. A. Bignozzi, “Design of Molecular Dyes for Application in Photoelectrochemical and Electrochromic Devices Based on Nanocrystalline Metal Oxide Semiconductors”, Coord. Chem. Rev. 248, 1299 (2004).
[11] A. S. Polo, M. K. Itokazu, N. Y. M. Iha, “Metal complex sensitizers in dye-sensitized solar cells”, Coord. Chem. Rev. 248, 1343 (2004).
[12] C. A. Bignozzi, R. Argazzi, C. J. Kleverlaan, “Molecular and Supramolecular Sensitization of Nanocrystalline Wide Band-gap Semiconductors with Mononuclear and Polynuclear Metal Complexes”, Chem. Soc. Rev. 29, 87(2000).
[13] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. MTller, P. Liska, N. Vlachopolous, M. Gratzel, “Conversion of Light to Electricity by Cis-X2 Bis(2,2'-Bipyridyl-4,4'- Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc.115, 6382 (1993).
[14] A. Islam, H. Sugihara, K. Hara, L. P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, and H. Arakawa, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by β-diketonato ruthenium polypyridyl complexes”, J. Photochem. Photobiol. A 145, 135 (2001).
[15] M. K. Nazeeruddin, P. Pechy, M. Gratzel, “Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex”, Chem. Commun., 1705 (1997).
[16] D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, N. S. Lewis, “Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes”, J. Phys. Chem. B 105, 392 (2001).
[17] R. Argazzi, G. Larramona, C. Contado, C. A. Bignozzi, “Preparation and Photoelectrochemical Characterization of a Red Sensitive Osmium Complex Containing 4,4′,4′′-Tricarboxy-2,2′:6′,2′′- Terpyridine and Cyanide Ligands”, J. Photochem. Photobiol. A 164, 15 (2004).
[18] A. Islam, H. Sugihara, K. Hara, L. P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa, “Dye Sensitization of Nanocrystalline Titanium Dioxide with Square Planar Platinum(II) Diimine Dithiolate Complexes”, Inorg. Chem. 40, 5371 (2001).
[19] E. A. M. Geary, L. J. Yellowlees, L. A. Jack, I. D. H. Oswald, S. Parsons, N. Hirata, J. R. Durrant, N. Robertson, “Synthesis, Structure, and Properties of [Pt(II)(diimine)(dithiolate)] Dyes with 3,3‘-, 4,4‘-, and 5,5‘-Disubstituted Bipyridyl:Applications in Dye-Sensitized Solar Cells”, Inorg. Chem. 44, 242 (2005).
[20] G. M. Hasselmann, G. J. Meyer, “Sensitization of Nanocrystalline TiO2 by Re(I) Polypyridyl Compounds”, Z. Phys. Chem. 212, 39 (1999).
[21] N. Alonso-Vante, J.-F. Nierengarten, J.-P. Sauvage, “Spectral Sensitization of Large-Band-Gap Semiconductors (Thin Films and Ceramics) by a Carboxylated Bis(1,10-phenanthroline)Copper(I) Complex”, J. Chem. Soc. Dalton Trans.,1649 (1999).
[22] P. M. Jayaweera, S. S. Palayangoda, K. Tennakone, “Nanoporous TiO2 Solar Cells Sensitized with Iron(II) Complexes of Bromopyrogallol Red Ligand”, J. Photo-chem. Photobiol. A 140, 173 (2001).
[23] K. Hara, Z.-S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, “Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells”, J. Phys. Chem. B 109, 15476 (2005).
[24] S. Alex, U. Santhosh, S. Das, “Dye Sensitization of Nanocrystalline TiO2:Enhanced Efficiency of Unsymmetrical Versus Symmetrical Squaraine Dyes”, J. Photochem. Photobiol. A 172, 63 (2005).
[25] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, J. Am. Chem. Soc. 126, 12218 (2004).
[26] Y.-S. Chen, C. Li, Z.-H. Zeng, W.-B. Wang, X.-S. Wang, B.-W. Zhang, “Efficient Electron Injection Due to a Special Adsorbing Group’s Combination of Carboxyl and Hydroxyl:Dye-Sensitized Solar Cells Based on New Hemicyanine Dyes”, J. Mater. Chem. 15, 1654 (2005).
[27] K. Hara, T. Sato, R. Katoh, A. Furube, T. Yoshihara, M. Murai, M. Kurashige, S. Ito, A. Shinpo, S. Suga, H. Arakawa, “Novel Conjugated Organic Dyes for Efficient Dye-Sensitized Solar Cells”, Adv. Funct. Mater. 15, 246 (2005).
[28] K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, K.-C. Ho, “Organic Dyes Containing Thienylfluorene Conjugation for Solar Cells”, Chem. Commun., 4098 (2005).
[29] T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian, S. Yanagida, “Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells”, Chem. Mater. 16, 1806 (2004).
[30] K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Novel Polyene Dyes for Highly Efficient Dye-Sensitized Solar Cells”, Chem. Commun., 252 (2003).
[31] W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, “Porphyrins as Light Harvesters in The Dye-Sensitised TiO2 Solar Cell”, Coord. Chem. Rev. 248, 1363 (2004).
[32] Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. Gordon, R. Humphrey-Baker, M. K. Nazeeruddin, M. Gratzel, “Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Films”, J. Phys. Chem. B 109, 15397 (2005).
[33] T. Komori, Y. Amao, “Dye-Sensitized Solar Cell with the Near-Infrared Sensitization of Aluminum Phthalocyanine”, J. Porphyrins Phthalocyanines 7, 131(2003).
[34] Y. Tachibana, J. E. Moser, M. Gratzel, D. R. Klug , J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films”, J. Phys. Chem. 100, 20056 (1996).
[35] G. J. Meyer “Molecular Approaches to Solar Energy Conversion with Coordination Compounds Anchored to Semiconductor Surfaces”, Inorg. Chem. 44, 6852 (2005).
[36] D. Kuang, C. Klein, H.J. Snaith, J.E. Moser, R. Humphry-Baker, P.Comte, S.M. Zakeeruddin, M. Gratzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells”, Nano Lett. 6, 769 (2006).
[37] D. Kuang, C. Klein, S. Ito, J.E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, “High Molar Extinction Coefficient Ion-Coordinating Ruthenium Sensitizer for Efficient and Stable Mesoscopic Dye-Sensitized Solar Cells”, Adv. Funct. Mater. 17, 154 (2007).
[38] M. Gratzel, “Recent Advances in Sensitized Mesoscopic Solar Cells” , Acc. Chem. Res. 42, 1788 (2009).
[39] M. Gratzel, “Dye-Sensitized Solar Cells”, J. Photochem. Photobiol.A:Photochem. Res. 4, 145 (2003).
[40] A. Hagfeldt, M. Gratzel,“Molecular Photovoltaics”, Acc. Chem. Res. 33, 269 (2000).
[41] M. Gratzel, J. E. Moser, Electron Transfer in Chemistry, Wiley-VCH:Weinheim, Germany, Vol. V, 587 (2000).
[42] B. V. Bergeron, G. J. Meyer, Photovoltaics for the 21set Century / The Electrochemical Society:Pennington, NJ, 173 (2001).
[43] A. B. F. Martinson, T. W. Hamann, M. J. Pellin, J. T. Hupp,“New Architectures for Dye-sensitized Solar Cells”, Chem. Eur. J. 14, 4458 (2008).
[44] N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel, “Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films” , J. Am. Chem. Soc. 110, 1216 (1988) .
[45] B. A. Gregg, C. L. Fields, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, J. Phys. Chem. B 105, 1422 (2001).
[46] R. Argazzi, G. J. Meyer, “Light-Induced Charge Separation across Ru(II)-Modified Nanocrystalline TiO2 Interfaces with Phenothiazine Donors”, J. Phys. Chem. B 101, 2591 (1997).
[47] H. Nusbaumer, M. Gratzel, “CoII(dbbip)22+ Complex Rivals Tri- iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells” , J. Phys. Chem. B 105, 10461 (2001).
[48] S. Y. Huang, G. Schlichthorl, A. J. Nozik et al.,“Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B 101, 2576 (1997).
[49] A. Hauch, R. Kern, J. Ferber et al., “Characterisation of the Electrolyte-Solid Interfaces of Dye-Sensitized Solar Cells by Means of Impedance Spectroscopy”, 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, European Communities (1998).
[50] N. Papageorgiou, M. Gratzel, P. P. Infelta,“On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells”, Sol. Energy Mater. Sol. Cells 44, 405 (1996).
[51] F. Cao, G. Oskam, P. C. Searson, “A Solid-State, Dye-Sensitized Photoelectrochemical Cell”, J. Phys. Chem. 99, 17071 (1995).
[52] S. A. Haque, S. Sodergren, A. Holmes et al.,“Solid State Dye-Sensitized Photovoltaic Cells Employing a Polymer Electrolyte”, International conference on photochemical conversion and storage of solar energy, Colorado (2000).
[53] T. J. Savenije, J. M. Warman, A. Goossens,“Visible Light Sensitization of Titanium Dioxide Using a Phenylene Vinylene Polymer”, Chem. Phys. Lett. 287, 148 (1998).
[54] U. Bach, D. Lupo, P. Comte et al.,“Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies”, Nature 395, 583 (1998).
[55] T. Miyasaka, Y. Kijitori,“Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers”, J. Electrochem. Soc. 151, A1767 (2004).
[56] M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim, “A 4.2% Efficient Flexible Dye-Sensitized TiO2 Solar Cells Using Stainless Steel Substrate”, Sol. Energy Mater. Sol. Cells. 90, 574 (2006).
[57] M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, “Low-Temperature Fabrication of Dye Sensitized Solar Cells by Transfer of Composite Porous Layers”, Nat. Mater. 4, 607 (2005).
[58] S. Ito, N. L. Cevey Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pe’ chy, M. K. Nazeeruddin, M. Gratzel, “High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode”, Chem. Commun., 4004 (2006).
[59] P. E. de Jongh, D. Vanmaekelbergh, “Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles”, Phys. Rev. Lett. 77, 3427 (1996).
[60] P. E. de Jongh, D. Vanmaekelbergh, “Investigation of the electronic transport properties of nanocrystalline particulate TiO2 electrodes by intensity-modulated photocurrent spectroscopy”, J. Phys. Chem. B 101, 2716 (1997).
[61] L. M. Peter, K. G. U. Wijayantha, “Electron Transport and Back Reaction in Dye Sensitised Nanocrystalline Photovoltaic Cells” , Electrochim. Acta 45, 4543 (2000).
[62] G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:A Study by Intensity Modulated Photovoltage Spectroscopy” , J. Phys.Chem. B 101, 8141 (1997).
[63] F. Cao, G. Oskam, G. J. Meyer, P. C. Searson, “Electron Transport in Porous Nanocrystalline TiO2 Photoelectrochemical Cells” , J. Phys. Chem. 100, 17021 (1996).
[64] L. Dloczik, O. Ileperuma, L. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:Characterization by Intensity-Modulated Photocurrent Spectroscopy” , J. Phys. Chem. B 101, 10281 (1997).
[65] F. Cao, G. Oskam, P. C. Searson et al.,“Electrical and Optical-Properties of Porous Nanocrystalline TiO2 Films”, J. Phys. Chem. 99, 11974 (1995).
[66] J. Bisquert, G. GarciaBelmonte, F. Fabregat Santiago, “Modelling the Electric Potential Distribution in the Dark in Nanoporous Semiconductor electrodes”, J. Solid State Electrochem. 3, 337 (1999).
[67] N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, K. G. U. Wijayantha, “Investigation of the Kinetics of the Back Reaction of Electrons with Tri-Iodide in Dye-Sensitized Nanocrystalline Photovoltaic Cells”, J. Phys. Chem. B 104, 8916 (2000).
[68] L. M. Peter, N. W. Duffy, R. L. Wang, K. G. U. Wijayantha, “Transport and Interfacial Transfer of Electrons in Dye-Sensitized Nanocrystalline Solar Cells”, J. Electroanal. Chem. 524, 127 (2002).
[69] J. S. Wilkes, J. A. Levisky, R. A. Wilson, Ch. L. Hussey, “Dialkylimidazolium Chloroaluminate Melt:a New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis” , Inorg. Chem. 21, 1263 (1982).
[70] A. A. Fannin, D. A. Jr., J. L. Williams et al., “Properties of 1,3-Dialkylimldazollum Chloride-Aluminum Chloride Ionic Liquids. 2. Phase Transitions, Densities, Electrical Conductivities, and Viscosities” , J. Phys. Chem. 88, 2614 (1984).
[71] Y. Cao, J. Zhang, Y. Bai, R. Li, S. M. Zakeeruddin, M. Gratzel, P. Wang,“Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes”, J. Phys. Chem. C 112, 13775 (2008).
[72] A. A. Farah, W. J. Pietro, “Telechelic Poly (Epsilon-Caprolactones) with Tethered Mixed Ligand Ruthenium (II) Chromophores”, Can. J. Chem. 82, 595 (2004).
[73] C. L. Donnici and E. B. Paniago, “Synthesis of the Novel 4,4- and 6,6-Dihydroxamic-2,2-Bipyridines and Improved Routes to 4,4- and 6,6-Substituted 2,2-Bipyridines and Mono-N-Oxide-2,2-Bipyridine,” J. Braz. Chem. Soc. 9, 455 (1998).
[74] L. D. Ciana, W. J. Dressick and A. Von Zelewsky, “Synthesis of 4, 4′‐Divinyl‐2, 2′‐Bipyridine”, J. Heterocyclic Chem. 27, 163 (1990).
[75] R. S. Ward, D. Branciard, R. A. Dignan, M. C. Pritchard, “Synthesis of C2 Symmetric 2, 2'-Bipyridyl Imidazolidinone and Oxazaborolidine Derivatives” , Heterocycles. 56, 157 (2002).
[76] T. Mitsumori, I. M. Craig, I. B. Martini, B. J. Schwartz and F. Wudl, “Synthesis and Color Tuning Properties of Blue Highly Fluorescent Vinyl Polymers Containing a Pendant Pyrrolo- pyridazine”, Macromolecules 38, 4698 (2005).
[77] D. M. Antonelli, J. Y. Ying,“Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method”, Angew. Che. Int. Edit. 18, 2014 (1995).
[78] S. D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Arendse, K. Brooks, and M. Gratzel, “ Self-Organization of TiO2 Nanoparticles in Thin Films”, Chem. Mater. 10, 2419 (1998).
[79] J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, and F. Koch,“Influence of Oxygen and Water Related Surface Defects on the Dye Sensitized TiO2 Solar Cell”, Sol. Energy Mater. Sol. Cells 56, 153 (1999).
[80] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel,“Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Cera. Soc. 80, 3157 (1997).
[81] K. Y. Liu, C. L. Hsu, S. H. Chang, J. G. Chen, K. C. Ho and K. F. Lin, “Synthesis and Characterization of Cross-linkable Ruthenium Complex Dye and Its Application on Dye-Sensitized Solar Cells”, J. Polym. Sci. Part A:Polym. Chem. 48, 366 (2009).
[82] W. Wieczorek, P. Lipka, G. Zukowska, H. Wycislik, “Ionic Interactions in Polymeric Electrolytes Based on Low Molecular Weight Poly(ethylene glycol)s”, J. Phys. Chem.B 102, 6968 (1998).
[83] P. Firman, M. Xu, E.M. Eyring, S. Petrucci, “Molecular Relaxation Dynamics of Lithium Perchlorate in Acyclic Polyether Solvents”, J. Phys. Chem. 97, 3606 (1993).
[84] M. Salomon, M. Xu, E.M. Eyring, S. Petrucci, “Molecular Structure and Dynamics of LiClO4-Polyethylene Oxide-400 (Dimethyl Ether and Diglycol Systems) at 25 .degree.C”, J. Phys. Chem. 98, 8234 (1994).
[85] W. Wieczorek, K. Such, Z. Florjanczyk, J.R. Stevens, “Comparison of Properties of Composite Polymeric Electrolytes Based on the Oxymethylene-Linked Poly(ethylene oxide) NaClO4 Electrolyte with Polyacrylamide or .alpha.-Al2O3 Additives” , J. Phys. Chem. 98, 9047(1994).
[86] M. Chabanel, D. Legoff, K. Touaj, “Aggregation of Perchlorates in Aprotic Donor Solvents. Part 1.-Lithium and Sodium Perchlorates”, J. Chem. Soc., Faraday Trans. 92, 4199 (1996).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32729-
dc.description.abstract本論文的研究主題專注於可交聯光敏劑Ru(4,4’-dicarboxylic acid) (4,4'-bis((4-vinylbenzyloxy)methyl) -2,2'- bipyridine)(NCS)2(簡稱 Ru-S),與離子溶液電解質系統在染料敏化太陽能電池的光電性質研究。本論文分成兩部分,第一部分著重於探討單成份(PMImI)、雙成份(PMImI/EMIDCA)離子溶液電解質系統和交聯與未交聯Ru-S染料敏化太陽能電池的表現。第二部份,將Ru-S與三種分子量的trimethylolpropane ethoxylate triacrylate(TET) 交聯後(分子量=428、604、912;依序簡稱RuS-co-TET428、RuS-co-TET604 and RuS-co-TET912) 做成太陽能電池元件,分析不同分子量的交聯劑對光電轉換效率的影響。第一部分,在染敏太陽能電池單成份離子溶液電解質系統中,將RuS 以不同濃度triethyleneglycodimethacrylate (TGDMA)進行交聯,可提升電池效率達4.84%。將低黏度的EMIDCA與PMImI以1:1 (體積比)方式混合成雙成份離子溶液(PMImI/EMIDCA)電解質,元件的開路電壓與短路電流都有顯著提升;接著調整雙成份離子溶液電解質中I2與LiClO4濃度均能有效提升元件的短路電流,而元件效率可提升到6.52 %,並藉著交流阻抗分析元件,得知影響效率的因素。
在第二部份,將三種分子量的TET交聯劑,分別以不同濃度與RuS交聯後,當TET濃度介於10-3~10-4 M(與RuS形成單層交聯網),元件效率有優異表現,以RuS-co-TET912為例,元件效率高達7.2 %。同時利用Voltage decay-Charge extraction 實驗分析元件的電位與電量關係,發現有較高的電子/染料貢獻比,電子生命周期也較長。最後,將RuS與TET912交聯後,應用在染料敏化太陽能電池之雙成份離子溶液電解質系統,量測元件的長效穩定性,於室溫下經過960hr,元件的效率仍可保有原先水準的表現。
zh_TW
dc.description.abstractIn this thesis,we focus on the photovoltaic performance of dye-sensitized solar cells (DSSCs) based on ionic liquid electrolyte systems and cross-linkable sensitizer Ru(4,4’-dicarboxylic acid) (4,4'-bis((4-vinylbenzyloxy)methyl)-2,2'-bipyridine) (NCS)2, denoted as RuS. There are two parts in this thesis. In the first part, the photovoltaic performance depending on 3-propyl-1-methylimidazolium iodide (PMImI) and binary PMImI/1-ethyl-3-methylimidazolium dicyanamide (EMIDCA) ionic liquid electrolyte systems for DSSCs with non-crosslinked and crosslinked RuS was investigated. In the second part, RuS on TiO2 mesoporous layer was crosslinked with three different molecular weights (Mw = 428、604、912) of trimethylolpropane ethoxylate triacrylate (TET), denoted as RuSco-TET428、RuSco-TET604 and RuSco-TET912, respectively for fabricating DSSCs. The influence of molecular weight for TET on power conversion efficiency was evaluated.
In the first part, the power efficiency of DSSCs using RuS crosslinking with different concentrations of triethyleneglyco- dimethacrylate (TGDMA) and PMImI ionic liquid electrolyte systems reached 4.84 %. By using binary ionic liquid electrolyte systems comprised of PMImI and low viscosity EMIDCA (1:1 (v/v)), the short-circuit photocurrent (Jsc) and open-circuit photovoltage (Voc) of the device were higher than those using PMImI ionic liquid electrolyte systems. As we optimized the contents of I2 and LiClO4 in binary ionic liquid electrolyte, the device exhibited higher efficiency of 6.5 % resulted from the increase of Jsc. The photovoltaic properties were also investigated by electrochemical impedance spectroscopy (EIS).
In the second part, the DSSCs based on RuS-co-TET428、RuS-co-TET604 and RuS-co-TET912 and a binary ionic liquid electrolyte gave an impressive efficiency, especially when the concentrations of TET in acetonitrile were enough (10-3 ~10-4 M) to form a single layer network with RuS. Take RuS-co-TET912 as a example, the device exhibited an excellent power conversion efficiency of 7.2 %. According to voltage decay-charge extraction measurement, the increase of cell performance was attributed to the higher electron/dye ratio and longer electron lifetime. Finally, the DSSCs based on RuS-co-TET912 in binary ionic liquid electrolyte exhibited good stability with the power efficiency remaining unchanged after 960hr at room temperature.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:14:19Z (GMT). No. of bitstreams: 1
ntu-100-R98549021-1.pdf: 5399918 bytes, checksum: e9c80165ba11bb546120b17573989edc (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審訂書…………………………………………………………………….i
誌謝……………………………………………………………………........................ii
摘要..............................................................................................................................iii
Abstract…………………………………………………………………...……...…...iv
Table of contents……………………………………………………………………...vi
List of tables…………………………………………………………………..……...xii
List of figures……………………………………………………………………..….xv
Nomenclatures………………………………………………………………..……...xxi

Chapter 1 Literature review………………………………………………………...….1
1-1 Preface…………………………………………………………………...…….. ..1
1-2 Solar cells……………………………………………………………..………….2
1-2.1 Crystalline Silicon solar cells……………..………………………………...3
1-2.2 Thin Film solar cells………………………………………………….……..4
1-2.3 Dye-sensitized solar cells…………………………………………………...5
1-3 Dye-sensitized solar cells(DSSCs)……………………………………...………..5
1-3.1 Key components of the DSSCs…………………..…………………………6
1-3.2 Semiconductor………………………………………………………………7
1-3.3 Molecular chromophores as sensitizers…………………………….……….8
1-3.4 Redox mediator……………………………………………………………14
1-3.5 Hole transport material (HTM)……………………………………………15
1-3.5.1 Liquid electrolytes……………………………..….……….15
1-3.5.2 Solid-state Hole Conductors…………...……………..……16
1-3.6 Counter electrode…………………………...……………………………..17
1-3.7 Operating principle of DSSCs……………………………………………..18
1-4 Intensity modulated photocurrent spectroscopy (IMPS) and Intensity modulated photovoltage spectroscopy (IMVS)……………………………………….....20
1-5 Electrical Impedance Spectroscopy (EIS)…………………………...………….23
1-6 Voltage decay-charge extraction measurement………………………...……….24
1-7 Ionic liquid……………………………………………………………..……….26
1-8 Motivations and experiment outlines…………………………………..…….…28

Chapter 2 Experimental section…………………………………………...…………32
2-1 Chemicals………………………..……………………………………...………32
2-2 Experimental apparatus………………………………………………...……….34
2-3 Synthesis methods……………………………………………………...……….35
2-3.1 Synthesis of RuS…………………………………………………….…….36
2-3.2 Synthesis of 3-propyl-1-methylimidazolium iodide (PMImI).......................................................................................................40
2-3.3 1-(2-acryloyloxy-ethyl)-3-methyl- imidazol-1-ium iodide (AMImI)………………………………………………………...………...40
2-3.4 Synthesis of the TiO2 nanoparticle pastes…………………………..……..41
2-4 Preparation of electrolytes………………………………………...…………….42
2-4.1 Electrolyte A (PMImI IL electrolyte)………………………….…………..42
2-4.2 Electrolyte B (PMImI/EMIDCA binary IL containing LiClO4)……………………………………………………………...…….43
2-5 Fabrication of photovoltaic electrode………………………………...…………43
2-5.1 Cleaning of Conductive glass (FTO & ITO)…………………………..…..43
2-5.2 Preparation of working electrode……………….…………………………44
2-5.3 Preparation of counter electrode……………………………….…..………45
2-6 Preparation of sample……………………………………………...……………45
2-6.1 Preparation of crosslinked RuS on TiO2 films……………………….……45
2-6.2 Preparation of RuS-co-crosslinker on TiO2 films…………………………45
2-6.3 Preparation of dye samples for IR measurement…………………………..46
2-6.4 Preparation of dye samples for UV-vis adsorption measurement……………………………………………………………....46
2-7 Solar cell fabrication……………………………………………..……………..47
2-8 Photoelectrochemical measurement of solar cell……………...………………..47
2-8.1 Photocurrent-Voltage Characterization……………………………………47
2-8.2 Electrochemical impedance analysis…………………………………..48
2-8.3 Incident photo to current conversion efficiency…………………………...49
2-8.4 IMPS and IMVS…………………………………………………………...49
2-8.5 Voltage decay and Charge extraction measurement………………………50
2-8.6 Long-term stability test……………………………………………………50
Chapter 3 Results and Discussion……………………………………………………51
3-1 Characterization of RuS……………………………………………...…………51
3-1.1 NMR specta of RuS………………………………………..………………51
3-1.2 IR spectrum of RuS…………………………………………….………….51
3-2 Crosslinking property of RuS ………………………………………….……….52
3-2.1 Cross-linkers……………………………………………………….………52
3-2.2 ATR-FTIR spectra for crosslinking property of RuS ………………..……54
3-2.2.1 ATR-FTIR spectum for crosslinked RuS……………………….54
3-2.2.2 ATR-FTIR spectum for RuS-co-AMImI ………………………54
3-2.2.3 ATR-FTIR spectum for RuS-co-TGDMA……………...………55
3-2.2.4 ATR-FTIR spectum for RuS-co-TET912………………..………56
3-2.3 UV-vis absorption spectra to investigate the crosslinking property of RuS with various functional cross-linkers……………………………………...56
3-3 PMImI IL electrolyte systems (electrolyte A) for DSSCs……………..……….58
3-3.1 Photovoltaic performance of DSSCs based on RuS-co-AMImI with electrolyte A………………………………………………………………58
3-3.2 Incident Photon to Current Efficiency (IPCE) of DSSCs based on RuS-co-AMImI with electrolyte A………………………………………..58
3-3.3 Photovoltaic performance of DSSC based on RuS-co-TGDMA with electrolyte A………………………………………………………………59
3-3.4 IPCE of DSSCs based on RuS-co-TGDMA with electrolyte A………………………………………………………………………..…59
3-4 PMImI/EMIDCA binary IL electrolyte systems for DSSCs ……………….…. 60
3-4.1 Photovoltaic performance of DSSCs with PMImI/EMIDCA binary IL electrolyte systems………………………………………………..……….60
3-4.1.1 Photocurrent-voltage characteristics of DSSCs based on RuS with binary IL electrolyte systems…………………………...………60
3-4.1.2 Electrochemical impedance characteristics of DSSCs based on RuS with binary IL electrolyte systems…………………..…….61
3-4.1.3 Effect of I2 concentration in PMImI/EMIDCA on I–V characteristics of DSSCs based on RuS……………..………….63
3-4.1.4 Effect of I2 concentration in PMImI/EMIDCA on electrochemical impedance of DSSCs based on RuS…………………………….64
3-4.2 Effect of LiI concentration in PMImI/EMIDCA binary IL systems on I-V characteristics of DSSCs based on RuS ……………………………...…..65
3-4.2.1 Effect of LiI concentration in PMImI/EMIDCA on electrochemical impedance characteristics of DSSCs ……...….66
3-4.3 Effect of LiClO4 concentration in PMImI/EMIDCA binary IL systems on I-V characteristics of DSSCs ……………………………………….…….67
3-4.3.1 I-V Characteristics of DSSCs based on RuS-co-TET428 with electrolyte B……………………………………………….……68
3-4.3.2 IPCE of DSSCs based on RuS-co-TET428 (electrolyte B)………69
3-4.3.3 I-V characteristics of DSSCs based on RuS-co-TET604 and electrolyte B…………………………………………………….70
3-4.3.4 IPCE of DSSCs based on RuS-co-TET604 (electrolyte B)……....71
3-4.3.5 I-V characteristics of DSSCs based on RuS-co-TET912 with electrolyte B…………………………………...………………..71
3-4.3.6 IPCE of DSSCs based on RuS-co-TET912 (electrolyte B)……....73
3-4.3.7 Electrochemical impedance characteristics of DSSCs based on RuS-co-TET912 and electrolyte B……………………………….73
3-4.3.8 IMPS/IMVS characteristics of DSSCs based on RuS-co-TET912 and electrolyte B……………………………………………..…74
3-4.3.9 Voltage decay – Charge extraction measurement of DSSCs based on RuS-co-TET912 …………………………………….......……….75
3-5 Long –term stability test of DSSCs based on RuS………………………..…….77
3-5.1 Long-term stability test of DSSCs based on RuS-co-TGDMA with electrolyte A………………………………………………………………77
3-5.2 Long-term stability test of DSSCs based on RuS-co-TET912 with electrolyte B………………………………………………………………………...…77
Chapter 4 Conclusion………………………………………………..……………….79
References………………………………………………………………...………….81
Tables……………………………………………………………….………………..90
Figures………………………………………………………………………………..99
Supporting Information……………………………………………………..………131
dc.language.isozh-TW
dc.title可交聯光敏劑與雙成份離子溶液電解質在染敏太陽能電池光電性質之研究zh_TW
dc.titlePhotovoltaic performance of dye-sensitized solar cells based on cross-linkable sensitizers and binary ionic liquid electrolyte systemen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川,王立義,趙基揚
dc.subject.keyword可交聯光敏劑,染敏太陽能電池,離子溶液電解質,光伏,電化學阻抗,zh_TW
dc.subject.keywordcrosslinkable sensitizer,DSSC,ionic liquid electrolyte,photovoltaic,electrochemical impedance,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
5.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved