請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32718
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳先琪(Shian-Chee Wu) | |
dc.contributor.author | Pei-Chia Chuang | en |
dc.contributor.author | 莊珮嘉 | zh_TW |
dc.date.accessioned | 2021-06-13T04:14:05Z | - |
dc.date.available | 2016-08-01 | |
dc.date.copyright | 2011-08-01 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-28 | |
dc.identifier.citation | 六、 參考文獻
Allison , E. M. , and Walsby , A. E. , 1981 , The role of potassium in the control of turgor pressure in a gas-vacuolate blue-green alga , J. Exp. Bot. 32:241 - 249. Deacon , C. , and Walsby , A. E. , 1990 , Gas vesicle formation in the dark, and in light of different irradiances , by the cyanobacterium microcystis sp. , Br. Phycol. J. 25:133 - 139. Droop , M. R. , 1973 , Some thoughts on nutrient limitation in algae. , J. Phycol. 9 : 264 - 272. Ebina , J. , Tsutsui , T. , and Shirai , T. , 1983 , Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation , Water Res. 17 : 1721- 1726 . Fujimoto , N. , and Sudo , R. , 1997 , Nutrient-limited growth of microcystis aeruginosa and phormidium tenue and competition under various N: P supply ratios and temperatures , Limnol. Oceanogr. 42 : 250 - 256. Ganf , G. G. , and Oliver , R. L. , 1982 , Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake , J. Ecol. 70:829 - 844. Grant , N. G. , and Walsby , A. E. , 1977 , The contribution of photosynthate to turgor pressure rise in the planktonic blue green alga Anabaena fios-aquae , J. Exp. Bot. 28:409 - 415. Grover , J. P. , 1991 , Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model , Am. Nat. 138:811 - 835. Hitzfeld , B. C. , Hoger , S. J. , and Dietrich , D. R. , 2000 , Cyanobacterial toxins:removal during drinking water treatment , and human risk assessment , Environ. Health Perspect. 108 : 113 - 122 . Kilham , S. , Kreeger ,D. A. , Goulden , C. , and Lynn , S. , 1997 , Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus , Freshw. Biol. 38:591 - 596. Krivtsov , V. , Bellinger , E. G. , and Sigee , D. C. , 2005 , Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion , Aquatic Ecology 39:123 - 134. Kromkamp , J. , Konopka , A. , and Mur , L. R. , 1988 , Buoyancy regulation in light limited continuous cultures of Microcystis aeruginosa , J. Plankton Res. 10:171 - 183. Kromkamp , J. , Van Den Heuvel , A. , and. Mur , L. R. , 1989 , Phosphorus uptake and photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa , Br. Phycol. J. 24:347-355. Kruskopf , M. , and Plessis , S. D. , 2006 , Growth and filament length of bloom forming Oscillatoria simplicissima (Oscillatoriales, Cyanophyta) in varying N and P concentrations , Hydrobiologia 556:357 - 362. Maddux , W. S. , and Jones , R. F. , 1964 , Some interactions of temperature , light intensity and nutrient concentrations during the continuous culture of Nitzschia closterium and Tetraselmis sp , Limnol. Oceanogr. 9: 79 - 86. Okada , M. , and Sudo , R. , 1982 , Phosphorus uptake and growth of blue-green alga , Microcystis aeruginosa. , Biotechnol. Bioeng. 24:142 - 152. Oliver , R. L. , and Walsby , A. E. , 1984 , Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena fios-aquae (Cyanobacteria) , Limnol. Oceanogr. 29: 879-886. Reynolds , C. S. , and Walsby , A. E. , 1975 , Waterblooms. , Biol. Rev. 50:437 - 481. Reynolds , C. S. , Oliver , R. L. , and Walsby , A. E. , 1987 , Cyanobacterial dominance:the role of buoyancy regulation in the billowing environment , N.Z. J. Mar. Freshwater Res. 21 : 379 - 390. Rhee , G-Y. , 1973 , A continuous culture study of phosphate uptake , growth rate , and polyphosphate in Scenedesmus sp. , J. Phycol. 9 : 495 - 506. Rhee , G-Y. , and Gotham , I. J. , 1980 , Optimum N:P ratios and coexistence in phytoplankton , J. Phycol. 16 : 486 - 489. Rhee , G-Y. , and Gotham , I. J. , 1981 , The effect of environmental factors on phytoplankton growth : light and the interactions of light with nitrate limitation , Limnol. Oceanogr., 26 : 649 - 659. Riegman , R. , And Mur , L. R. , 1984 , Regulation of phosphate uptake kinetics in Oscillatoria agardhii , Arch. Microbio.l 139:28 - 32. Riegman , R. , and Mur , L. R. , 1985 , Effects of photoperiodicity and light irradiance on phosphate-limited Oscillatoria agardhii in chemostat cultures (II phosphate uptake and growth) , Arch. Microbiol. 142:72 - 76. Riegman , R. , Rutgers , M. , and Mur , L. R. , 1985 , Effects of photoperiodicity and light irradiance on phosphate-limited Oscillatoria agardhii in chemostat cultures(I. photosynthesis and carbohydrate storage) , Arch. Microbiol. 142:66 - 71 . Ritchie , R. J. , Donelle , A. T. , and Larkum , A. W. D. , 2001 , Phosphate limited cultures of the cyanobacterium Synechococcus are capable of very rapid , opportunistic uptake of phosphate , New Phytol. 152 : 189 - 201. Shen , H. ,and Song ,L. , 2007 , Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis , Hydrobiologia 592:475 - 486. Smith , R. E. H. , and Kalff , J. , 1982 , Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton , J. Phycol. 18: 275 - 284. Smith , V. H. , 1983 , Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton , Science:221:669 - 671. Stolte , W. , and Riegman , R. , 1995 , Effect of phytoplankton cell size on transient-state nitrate and ammonium uptake kinetics , Microbiology 141: 1221 - 1229. Thomas , R. H. , and Walsby , A. E. , 1986 , Buoyancy regulation in a strain of Microcystis , J. Gen. Microbiol. 131:799 - 809. Vasconcelos V.M. , Carmchael W.W. , and Croll , B. , 1996 , Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese Freshwaters. , Water. Res. 30 :2377 - 2384. Walsby , A. E. , 1969 , Structure and function of gas vesicles , Bacteriol. Rev. 36:1 - 32. Walsby , A. E. , 1971 , The pressure relationships of gas vacuoles , Proc. R. Soc. Lond. Ser. B .Biol. Sci. 178:301 - 326. Whitton B. A. , 1992 ,Diversity , ecology and taxonomy of the cyanobacteria. Biotechnol. Handb. 1 - 51. Xie , L. , Xie , P. , Li , S. , Tang , H. , Liu , H. , 2003 , The low TN : TP ratio , a cause or a result of Microcystis blooms , Water Res. 37:2073 - 2080. Yasuno M. , Sugaya Y. , and Okada M. , 1998 , Variations in the toxicity of Microcystis species to Moina macrocopa. , Phycological Res. 46:31 - 36. 台灣自來水公司 , 2011 ,新山水庫藻類優養指標與水庫水質相關性之研究,國立台灣大學環境工程學研究所承辦。 行政院環境保護署環境檢驗所 , 1986 , 台灣地區水庫浮游藻類圖鑑 。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32718 | - |
dc.description.abstract | 台灣地區水庫藻華問題嚴重,不但會使淨水成本增加,亦會依優勢藻種之不同,產生不同的問題。優勢之藻種常為藍綠藻,而藍綠藻中之微囊藻更是台灣水庫常發生的優勢藻種,其為人所注目之原因,係因為有部分微囊藻藻種會產生藻毒素,對人體健康產生影響。
微囊藻常在春末夏初之際,於熱分層水域中,成為優勢藻種。造成此現象之因素,主要是因為微囊藻具有浮力調控之機制,藉由浮力調控機制垂直上下移動;以及藻體會瞬間攝取超過生長所需之營養鹽並儲存於體內。因此微囊藻可以停留於光線充足之表水層進行光合作用,以及至下層水體攝取營養鹽,克服光線與營養鹽之分層之問題,充分利用營養鹽與光線,大量生長。 本研究採集現場環境水體中之微囊藻,使其藻細胞生理狀態為飢餓,以不同光線強度照光,添加氮磷營養鹽於水體之中,量測水體營養鹽濃度之變化,計算藻體內營養鹽含量以及攝取率。實驗結果顯示,藻類具有超量攝取營養鹽並儲存於體內之能力,且營養鹽攝取速率受到外部營養鹽濃度(S)、從外部攝取進入藻體內之營養鹽含量(△Q)以及光線強度(I)影響。外部營養鹽濃度(S)高、光線強度(I)強皆會使攝取率增加,而從外部攝取進入藻體內之營養鹽含量(△Q)愈大,則會使攝取率降低。 本研究並利用Morel 與Okada and Sudo模式,模擬光線強度(I)、外部營養鹽濃度(S)以及藻體攝取之磷營養鹽濃度(△Q)等不同之情況下,磷攝取率之大小期待找到一個最佳模式,應用於實際環境之中,做為預測微囊藻生長及評估改善之工具。 Morel 模是簡化後,最佳參數為:可增加之體內營養鹽含量Qmax-Qmin=27 P-μg•SS-mg-1,半飽和營養鹽濃度係數Ks=0.847 P-mg•L-1。Qkada and Sudo模式簡化後,利用實驗數據找出之最佳參數為:Qmax-Qmin=23.5 P-μg•SS-mg-1,Ks=0.3863 P-mg•L ,半飽和體內營養鹽含量Kq=10.8 P-μg•SS-mg-1。兩模式所得之預測值與實測值相比,比較其相關性(Morel model:R=0.82,slope=0.805; Okada and Sudo model:R=0.84,slope=0.645)。 | zh_TW |
dc.description.abstract | The algal bloom is a serious problem in reservoirs, not only would increase the cost of water treatment, but also result in various problems due to different algal species. Blue-green algae are often the dominant species. Microcystis is one of blue-green algae, and often dominates in reservoirs. We are also concerned about on Microcystis due to some species of Microcystis is able to produce toxins which pose serious health risks to human and animals.
Microcystis is dominant algae in stratified lakes from late spring to early autumn. There are two mechanisms help the Microcystis dominance. The first mechanism is buoyancy regulation which allows Microcystis to overcome the vertical separation of light and nutrients in a stratified lake. The second mechanism is that Microcystis uptakes and stores nutrients more than the amount needed for growth. Therefore, Microcystis can stay in sufficiency of light in surface water for photosynthesis, and uptake nutrient in lower water. Microcystis overcomes the problem of light and nutrient separation, and blooms in stratified subtropical reservoirs. In this study, we sampled Microcystis from Hsin-Shan reservoir. In order to deplete the intracellular polyphosphate storage, we put change in nutrient free water under light with 14 : 10-h light :dark cycle for 3days. When the experiment began, we added nutrients in water under different irradiance intensities, and measured the changes of nutrient concentrations in water. The amounts of changes were used to calculate the N and P cell quota and uptake rates. The results show that Microcystis has the ability which can uptake and store nutrient in cells. The uptake rate is increases with light intensity, increases with external nutrient concentration and decreases with cell quota. We use Morel model and Okada and Sudo model to simulate the uptake under different irradiance intensity (I), external nutrient concentration(S) and nutrient concentration. The best fitting parameters in Morel model are:maximum allowed uptake , Qmax-Qmin=27 P-μg•SS-mg-1, helf saturated nutrient concentration , Ks=0.847 P-mg•L-1. The best fitting parameters in Okada and Sudo model are: maximum allowed uptake , Qmax-Qmin=23.5 P-μg•SS-mg-1, helf saturated cell quota , Kq=10.8 P-μg•SS-mg-1, helf saturated nutrient concentration , Ks=0.3863 P-mg•L-1. Morel model has R=0.82 , slope=0.805; Okada and Sudo model has R=0.84 , slope=0.645. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:14:05Z (GMT). No. of bitstreams: 1 ntu-100-R98541129-1.pdf: 1361953 bytes, checksum: 4c6380702e84ce705e4e21b7aeba13e6 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要
英文摘要 目錄 I 圖目錄 III 表目錄 VII 一、 緒論 1 1.1. 研究緣起 1 1.2. 研究目的 3 二、 背景與原理 3 2.1. 優養化之成因 3 2.2. 藍綠藻(Blue-green algae) 4 2.3. 營養鹽之攝取 5 2.3.1. 外部營養鹽 5 2.3.2. 內部營養鹽(internal nutrient pool) 6 2.3.3. 藻體大小與團聚與否 9 2.4. 光線 10 2.5. 營養鹽攝取之模式 15 2.5.1. Morel Model(1987) 15 2.5.2. Okada 與Sudo Model(1982) 16 2.6. 微囊藻浮力調控機制 17 三、 材料與方法 18 3.1. 微囊藻營養鹽攝取實驗 18 3.1.1. 研究材料 18 3.1.2. 研究方法 19 3.1.3. 藻體內及水體中營養鹽濃度之測量方法 20 3.1.4. 營養鹽攝取模式 22 3.2. 微囊藻日夜週期內之垂直移動實驗 22 3.2.1. 研究材料 22 3.2.2. 採樣方法 23 四、 結果與討論 25 4.1. 藻種分析結果 25 4.2. 藻體磷營養鹽之攝取 28 4.2.1. 磷營養鹽攝取模式-Morel Model(1987) 38 4.2.2. 磷營養鹽攝取模式- Okada and Sudo Model(1982) 40 4.3. Morel (1987)與 Okada & Sudo (1982)模式之比較 43 4.4. 藻體氮營養鹽之攝取 46 4.5. 微囊藻之浮力調控機制 49 4.5.1. 24小時水質監測結果 49 4.5.2. 微囊藻濃度分佈 51 五、 結論與建議 54 5.1. 結論 54 5.2. 建議 55 六、 參考文獻 56 附錄A:水質檢測結果 61 附錄B:攝取率之計算結果 65 附錄C:藻體營養鹽含量之計算結果 66 | |
dc.language.iso | zh-TW | |
dc.title | 光線強度與營養鹽濃度對微囊藻營養鹽攝取之影響 | zh_TW |
dc.title | The Effects of Irradiance Intensity and Nutrient Concentration on Microcystis Nutrient Uptake | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳俊宗(Jiunn-Tzong Wu),童心欣(Hsin-Hsin Tung) | |
dc.subject.keyword | 微囊藻,光線強度,營養鹽,浮力調控機制,垂直移動,磷攝取率,藻體內磷含量, | zh_TW |
dc.subject.keyword | Microcystis,light intensity,nutrients,buoyancy regulation,vertical movement,phosphorus uptake,P cell quota, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。