Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32712
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張正憲(Jeng-Shian Chang)
dc.contributor.authorChien-Ying Huangen
dc.contributor.author黃建穎zh_TW
dc.date.accessioned2021-06-13T04:13:58Z-
dc.date.available2008-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation[1] R. Raiteri, M. Grattarola, H. J. Butt, and P. Skladal, “Micromechanical cantilever-based biosensors”, Sensors and Actuators B, Vol. 79, pp. 115-126, 2001.
[2] M. E. Kassner, S. Nemat-Nasser, Z. Suo, G. Bao, J. C. Barbour, L. C. Brinson, H. Espinosa, H. Gao, S. Granick, P. Gumbsch, K.S. Kim, W. Knauss, L. Kubin, J. Langer, B. C. Larson, L. Mahadevan, A. Majumdar, S. Torquato, and F. Swol, “New directions in mechanics”, Mechanics of Marerials, Vol. 37, pp. 231-259, 2005.
[3] J. Cunningham, Introduction to Bioanalytical Sensors, John Wiley & Sons Inc., New York, USA, pp. 1 ~ 78, 1998.
[4] A. Janeway, P. Travers, S. Hunt, M. Walport, Immunology: the Immune System in Health and Disease, Gerland Publishing Inc., New York, USA, pp. 3-1 ~ 3-38, 1997.
[5] J. W. Kimball, Introduction to Immunology, Macmillan Publishing Company, New York, USA, pp.13 ~ 29, 1990.
[6] E. A. Padlan, “X-ray crystallography of antibodies,” Advances in protein chemistry, vol. 49, pp. 57 ~ 133, 1996.
[7] H. Ibach, “Adsorbate-induced surface stress,” Journal of vacuum science and technology. A. Vacuum, surfaces, and films, vol. 12, pp. 2240 ~ 2245, 1994.
[8] R. Berger, E. Delamarche, H. P. Lang, Ch. Gerber, J. K. Gimzewski, E. Meyer, H.-J. Güntherodt, “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp. 2021 ~ 2024, 1997.
[9] P. G. Datskos, I. Sauers, “Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers,” Sensors and Actuators B, vol. 61, pp. 75 ~ 82, 1999.
[10] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, pp. 316 ~ 318, 2000.
[11] K. M. Hansen, H. F . Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, and T. Thundat, “Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches”, Anal. Chem., Vol. 73, pp. 1567-1571, 2001.
[12] A. M. Moulin, S. J. O`Shea, and M. E. Welland, “Microcantilever - based biosensors”, Ultramicroscopy, Vol. 82, pp. 23-31, 2000.
[13] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Marjumdar,“Bioassay of prostate-specific antigen(PSA) using microcantilevers”, Nature Biotechnology, Vol. 19, pp. 856-860, 2001.
[14] S. Cherian, A. Mehta, and T. Thundat, “Investigating the mechanical effects of adsorption of Ca2+ ions on a silicon nitride microcantilever surface”, Langmuir , Vol. 18 , pp. 6935-6939, 2002.
[15] S. Cherian, and T. Thundat, “Determination of adsorption-induced variation in the spring constant of a microcantilever”, Applied Physics Letters, Vol. 80, pp. 2219-2221, 2002.
[16] K. Liu ,and H. F. Ji, “Detection of Pb2+ using a hydrogel swelling microcantilever sensor”, Analytical Sciences, Vol. 20, pp. 9-11, 2004.
[17] Y. Zhang, S. P. Venkatachalan, H. Xu, X. Xu, P. Joshi, H. F. Ji ,and M. Schulte,“Measurement of membrane receptor binding for label-free drug discovery”, Biosensors and Bioelectronics, Vol. 19, pp. 1473-1478, 2004.
[18] C. Ziegler, “Cantilever-based biosensors”, Anal. Bioanal. Chem. Vol. 379, pp.946-959, 2004.
[19] R. Berger, E. Delamarche, H. P. Lang, Ch. Gerber, J. K. Gimzewski, E. Meyer, H.-J. Güntherodt, “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp. 2021 ~ 2024, 1997.
[20] U. Jönsson, M. Malmqvist, I. Rönnberg, “Immobilization of immunoglobulins on silica surfaces-Stability,” The Biochemical Journal, vol. 227, pp. 363 ~ 371, 1985.
[21] R. Marie, H. Jensenius, J. Thaysen, C. B. Christensen, “Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors,” Ultramicroscopy, vol. 91, pp. 29 ~ 36, 2002.

[22] G. Wu, H.-F. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, pp. 1560 ~ 1564, 2001.
[23] R. Berger, E. Delamarche, H. P. Lang, Ch. Gerber, J. K. Gimzewski, E. Meyer, H.-J. Güntherodt, “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp. 2021 ~ 2024, 1997.
[24] M. K. Baller, H. P. Lang, J. Fritz, Ch. Gerber, J. K. Gimzewski, U. Drechsler, H. Rothuizen, M. Despont, D. Vettiger, F. M. Battiston, J. P. Ramseyer, P. Fornaro, E. Meyer, H.-J. Güntherodt, “A cantilever array-based artificial nose,” Ultramicroscopy, vol. 82, pp. 1 ~ 9, 2000.
[25] H.-J. Butt, “A sensitive method to measure changes in the surface stress of solids,” Journal of Colloid and Interface Science, vol. 180, pp. 251 ~ 260, 1996.
[26] A. M. Moulin, S. J. O’Shea, M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy, vol. 82, pp. 23 ~ 31, 2000.
[27] A. M. Moulin, S. J. O’Shea, R. A. Badley, P. Doyle, M. E. Welland, “Measuring surface-induced conformational changes in proteins,” Langmuir, vol. 15, pp. 8776 ~ 8779, 1999.

[28] R. Raiteri, H.-J. Butt, M. Grattarola, “Changes in surface stress at the liquid/solid interface measured with a microcantilever,” Electrochimica Acta, vol. 46, pp. 157 ~ 163, 2000.
[29] H.-F. Ji, K. M. Hansen, Z. Hu, T. Thundat, “Detection of pH variation using modified microcantilever sensors,” Sensor and Actuators. B. Chemical, vol. 72, pp. 233 ~ 238, 2001.
[30] G. Meyer, N. M. Amer, “Novel optical approach to atomic force microscopy,” Applied Physics Letters, vol. 53, pp. 1045 ~ 1047, 1988.
[31] P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, A. Boisen, “Optimized cantilever biosensor with piezoresistive readout,” Ultramicroscopy, vol. 97, pp. 371 ~ 376, 2003.
[32] M. Ferencik, “Handbook of immunochemistry”,1993.
[33] S.-F. Chou, “Studies on the development of a multi-functional tumor maker immunosensor,” Doctoral Thesis, Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, 2000.
[34] S. L. Brooks, A. P. F. Turner, “Biosensors for measurement and control,” Measurement and Control, vol. 20, pp. 37 ~ 43, 1987.
[35] F. Scheller, F. Schubert, Biosensors, Elsevier Science Publishing Inc., New York, USA, 1992.
[36] C. A. Janeway, P. Travers, M. Walport, Immunobiology: the Immune System in Health and Disease, Garland Publishing Inc., New York, USA, pp. 3-1 ~ 3-38, 1997.
[37] K. Andersson, M. Hämäläinen, M. Malmqvist, “Identification and optimization of regeneration conditions for affinity-based biosensors assays-a multivariate cocktail approach,” Analytical chemistry, vol. 71, pp. 2475 ~ 2481, 1999.
[38] A. N. Asanov, W. W. Wilson, P. B. Oldham, “Regenerable Biosensor Platform: A Total Internal Reflection Fluorescence Cell with Electrochemical Control,” Analytical Chemistry, vol. 70, pp. 1156-1163, 1998.
[39] M. Veen , W. Norde ,and M. C. Stuart,“Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme”, Colloids and Surfaces B, Vol. 35, pp. 33-40, 2004.
[40] S.E. Moulton, J. N. Barisci, A. Bath, R. Stella ,and G. G. Wallace, “Investigation of protein adsorption and electrochemical behavior at a gold electrode”, Journal of colloid and interface science, Vol. 261, pp.312-319, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32712-
dc.description.abstract在邁入高齡化人口分布與醫療資源分配不均的今天,生物感測晶片於近年來引起各界高度重視,無論是學術界或是產業界皆投入大量的資金、人力積極開發與研究。在生物醫療檢測及疾病之診斷上,生物分子辨識之定量分析扮演著舉足輕重的地位,而微懸臂梁生物感測器(Microcantilever biosensor)具有免螢光標記、高靈敏度、低成本製作及潛在可大量平行化檢測之優點,並朝向微小化、可攜帶式系統發展。
在生物感測器之製作中,辨識元蛋白(Probing protein)之固定效率不良,往往造成生物樣品之浪費而導致檢測成本增加。本研究利用蛋白質於不同溶液環境下帶電性之不同,以電場操控之技術提升辨識元蛋白於微懸臂梁感測表面之固定效率。並利用銦錫氧化物(ITO)導電薄膜製作流體外電極,結合流體內金、鎳電極成為一具電場操控之微懸臂梁生物感測器。運用電場對於蛋白質操控之技術,討論不同電壓下對於辨識原蛋白固定效果之影響;在電場的施加下,實驗成功的將辨識原蛋白之固定效率提高8倍之多,並以微懸臂梁對於生物分子之連續性量測,以彎曲量探討免疫檢測之過程。
本實驗利用電場操控蛋白質之技術,達到增加辨識元蛋白之固定效率與降低生物樣品浪費之目標,並以加入符合上市前審查為標準之概念,對於未來微懸臂梁生物感測器之發展進行策略性之規劃。
zh_TW
dc.description.abstractRecognition and quantification of bio-molecules are irreplaceable in biomedical tests and disease diagnosis. A microcantilever biosensor embedded with electrodes for manipulation and enhancement of probing protein immobilization onto sensing surfaces has been demonstrated. The electrically protein-manipulated, nanomechanics-based biosensor is featured with significant reduction of usage in probing biomaterials, label-free, high sensitivity, low production cost and massive parallel analysis potential; in addition, miniaturization and portability are the tendency of its future development.
For bio-sensor production, the probing protein immobilization process is ineffective, which invariably leads to a dramatic waste in proteins and thus a considerable increase of cost. Based on changes in electrical charges of the protein in different solution environments, the approach in this study enhanced the immobilization efficiency of probing protein onto the surfaces of microcantilever biosensors by applying electrical manipulation technique. With the merit of MEMS technique, it allows highly fabrication-compatible integration into microcantilever biosensors with electric devices. Connecting ITO conductive film created extrinsic fluidic electrodes with intrinsic fluidic gold and nickel electrodes, to make a microcantilever biosensor that is capable of manipulating electrical field.
It is evident that higher amount of probing antibody molecules immobilized onto sensing surfaces captures more detected specific molecules, indicating greater deflection and stresses as well. This however leads to significant cost in biosensor.
By applying electrical fields onto charged proteins, the protein manipulation exhibits a significant increase of probing immobilized proteins. As expected, most charged proteins distributed in solution are effectively attracted onto the sensing area within electric fields in high voltage. Under the influence of electrical field, the experiment successfully increased the effectiveness of probing protein immobilization by 8 times in which the microcantilever was used in real-time measurement of bio-molecules, and its deflection indicates a proportional concentration amount of antigen-antibody interaction. With such a novel approach, enhanced probing protein immobilization and thus dramatic reduction in protein usage have been greatly achieved in this work. Further effort for microcantilever biosensors is required in pursue of accreditation in pre-marketing censorship and new demonstration of its applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:58Z (GMT). No. of bitstreams: 1
ntu-95-R93543019-1.pdf: 4991850 bytes, checksum: 5507f83ef37bdf91af5f0fb1881ab2a5 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iv
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究背景 3
1.3.1 生物感測器(Biosensor) 3
1.3.2 辨識元之固定技術 5
1.4 文獻回顧 7
1.4.1 生物分子薄膜產生表面應力之探討 7
1.4.2 基因分析 8
1.4.3蛋白質分析 9
1.4.4 微懸臂梁於其他方面之應用 11

第二章 微懸臂梁感測器 14
2.1 生物分子薄膜感測器 14
2.1.1微懸臂梁彎曲機制 16
2.1.2 微懸臂梁彎曲量之量測技術 19
2.2 共振式微質量感測器 21
2.3 雙層材質熱能感測器 23
第三章 免疫反應 25
3.1 免疫反應之分類 25
3.1.1 非專一性免疫反應 25
3.1.2 專一性免疫反應 26
3.2 免疫球蛋白 28
3.2.1 抗體-抗原之交互作用 28
3.2.2 免疫球蛋白之結構 30
3.2.3 免疫球蛋白G 32
3.3 免疫分析法 32
第四章 蛋白質操控 38
4.1 蛋白質之表面電性 38
4.2 電場操控蛋白質應用 39
4.2.1 電泳法操控蛋白質 39
4.2.2 電場於生物感測表面再生之應用 41
4.2.3 電解質對於電場操控之影響 42
4.3 ITO導電薄膜之應用 44
4.4 結合環境酸鹼度與電場對蛋白質之操控 45
4.4.1 溶液環境對蛋白質吸附之影響 45
4.4.2 電極之表面電位對蛋白質吸附之影響 46
4.4.3 蛋白質操控技術整合 47
第五章 實驗架構 48
5.1 實驗架構簡述 48
5.2 晶片設計 49
5.2.1 微懸臂梁之設計 50
5.2.2 具電極微懸臂梁感測晶片製作 52
5.2.3 聚二甲基矽氧烷(PDMA)流道製作 56
5.2.4 晶片與流道之結合 59
5.2.5 ITO導電薄膜與微懸臂梁生物感測器之結合 60
5.3 光學檢測系統架設 62
5.3.1 光學元件 63
5.3.2 光場架設 64
5.3.3 光場調整及確認 66
5.4 流體系統之架設 67
5.4.1 流體中氣泡之影響與處理 68
5.5 系統整合 69
第六章 實驗流程與結果分析 70
6.1 實驗流程 70
6.1.1 實驗晶片前處理 70
6.1.2 磷酸鹽(PBS)緩衝液之配置 71
6.1.3 實驗樣品之準備 71
6.1.4 樣品注入閥之潔淨 72
6.1.5 實驗器材之架設 72
6.2 BIA流動式生物感測操作步驟 73
6.2.1 實驗變因之設計 75
6.3 實驗結果 76
6.3.1未加電壓之完整實驗反應 76
6.3.2 流體內電壓操控對於抗體吸附之影響 81
6.3.3 流體內及流體外電壓操控對於抗體吸附之影響 87
6.3.4 電壓操控對於相異濃度之抗體吸附效果比較 90
第七章 論文總結與未來展望 94
7.1 論文總結 94
7.2未來展望 95
7.2.1 微懸臂梁生物感測器之技術結合 95
7.2.2 上市前審查之準備策略 96
參考文獻 98
dc.language.isozh-TW
dc.subject辨識元蛋白zh_TW
dc.subject微懸臂梁生物感測器zh_TW
dc.subject電場操控zh_TW
dc.subjectprobing proteinen
dc.subjectmicrocantilever biosensoren
dc.subjectelectrically protein manipulateden
dc.title高效率辨識元蛋白固定之具電場操控型微懸臂梁生物感測器zh_TW
dc.titleA Novel Electrically Protein-manipulated Microcantilever Biosensor with Enhanced Probing Protein Immobilizationen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor黃榮山(Long-Sun Huang)
dc.contributor.oralexamcommittee林世明(Shi-Ming Lin),賴信志(Hsin-Chih Lai)
dc.subject.keyword辨識元蛋白,電場操控,微懸臂梁生物感測器,zh_TW
dc.subject.keywordprobing protein,electrically protein manipulated,microcantilever biosensor,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved