Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32697
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張時中
dc.contributor.authorKe-Ju Chenen
dc.contributor.author陳科竹zh_TW
dc.date.accessioned2021-06-13T04:13:41Z-
dc.date.available2008-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation[Mar98] D. P. Martin, “The Advantage of Using Short Cycle Time Manufacturing (SMC) Instead of Continuous Flow Manufacturing (CFM),” Proceeding of ASMC 1998, pp.89-94.
[RoC02] J. Robinson and F. Chance, “Dynamic X-Factor application for Optimizing Lot Control for Agile Manufacturing,” Proceeding of ISSM 2002.
[DSH03] D. Delp, J. Si, Y. Hwang and B. Pei, “A Dynamic System Regulation Measure for Increasing Effective Capacity: the X-Factor Theory,” Proceeding of IEEE Advanced Manufacturing Conference 2003, pp.81-88.
[GrH98] D. Gross and C. M. Harris, Fundamentals of Queueing Theory 3rd edition, Wiley press 1998.
[Ros02] S. M. Ross, Introduction to Probability Models, Academic press 2002.
[Vir01] J. Virtamo, ”38.143 Queueing Theory / Priority Queues,” Helsinki University of Technology, Fall 2001.
( http://www.netlab.tkk.fi/opetus/s383143/kalvot/E_priority.pdf )
[Bos02] S. K. Bose, ”Priority Operation of M/G/1 Queue, “Department of Electrical Engineering, I.I.T. 2002.
( http://home.iitk.ac.in/~skb/qbook/Slide_Set_9.PDF )
[Cha99] S. C. Chang, “Demand-Driven, Iterative Capacity Allocation and Cycle Time Estimation for Re-entrant Line, “Proceeding of Conference on Decision and Control IEEE 1999, pp.2270-2275.
[NaK97] Y. Narahari and L. M. Khan, “Modeling the Effect of Hot Lots in Semiconductor Manufacturing Systems, “IEEE Transactions on Semiconductor Manufacturing, vol. 10, no.1, February 1997, p.p.185-188.
[JLG99] S. Jain, C. C. Lim, B. P. Gan and Y. H. Low, “Criticality of Detailed Modeling in Semiconductor Supply Chain Simulation” Proceedings of the 1999 Winter Simulation Conference, pp. 888-896.
[OWY99] K. Ozawa, H. Wada and T. Yamaguchi, “Optimal Tool Planning Using the X-Factor Theory,” Proceeding of IEEE Semiconductor Manufacturing Conference 1999, pp. 49-52.
[LKW06] Amy H.I. Lee, He Yau Kang and Wen Pai Wang, “Analysis of Priority Mix Planning for the Fabrication of Semiconductors under Uncertainty,” Int. J. Adv. Manufacturing Technology 2006, pp. 351–361.
[HuS00] M.D. Hu and S.C. Chang, “Translating Overall Production Goals into Distributed Flow Control Parameters for Semiconductor Manufacturing,” Journal of Manufacturing Systems, vol. 22, no. 1, Aug. 2003, pp. 46-63
[Chi06] China Economics: (http://big5.ce.cn/cysc/ceit/zggng/200510/28/t20051028_5043441.shtml), 2006.
[HoS00] Wallace J. Hopp and Mark L. Spearman, Factory Physics 2nd,Mc Graw Hill press 2000.
[AdR01] I. Adan and J. Resing, Queueing Theory, P.O. Box 513, 5600 MB Eindhoven, the Netherlands, February 14, 2001.
( http://mia.ece.uic.edu/~papers/WWW/Flexi-Tunes/tarballs/queue.pdf )
[CFY96] D. P.Connors, G. E. Feigin and D. D. Yao, “A Queueing Network Model for Semiconductor Manufacturing,” IEEE transactions on semiconductor manufacturing Vol. 9 no.3, 1996, p.p.412-427.
[KOW01] M. Kishimoto, K. Ozawa, K. Watanabe, and D. Martin, “Optimized Operations by Extended X-Factor Theory Including Unit Hours Concept,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, no. 3, Auguest 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32697-
dc.description.abstract市場的全球化迫使半導體製造業者必須極力去尋求可以增進他們競爭力的管理方法,而晶圓廠在半導體供應鏈中佔了關鍵的地位,因為它代表的是龐大的投資,所以我們會把重點集中在晶圓廠上。而且晶圓廠通常都會有不同服務等級(Priority)的訂單,等級越高則可以得到優先加工的權利,因而增加了顧客提早進入市場的優勢,所以如何規劃不同服務等級訂單之間的比例將會帶給晶圓廠極大的挑戰。
為了能夠規劃不同服務等級訂單之間的比例,我們必須了解晶圓廠績效指標的變化。在晶圓廠眾多的指標之中,產品停滯於系統的時間(Cycle time)對於晶圓廠的生產力與顧客的服務率有重大的影響。為了管理與量測Cycle time,我們使用X-Factor來當作評估Cycle time變化的指標。
所以在本篇論文裡,為了得到最佳獲利我們把注意力放在利用具優先順序的(Priority) X-Factor設置目標的產能規劃上。因此,我們便需要一個晶圓廠X-Factor的模型來分析PXF、各種服務等級的比例及產能利用率三者的關係。現在有很多種方法被用來模擬晶圓廠的行為,而其中一種十分常見的方法就是排隊理論。而我們把晶圓廠的XF分成三個層次:整個晶圓廠、每個製程階段、不同服務等級的產品。首先,我們利用排隊理論中具優先權(Priority)的M/G/1近似法去計算每個加工階段的PXF。我們也提出了利用修正投料變異的係數去修正M/G/1精準度的方法(Model Fitting)。最後,提出了可以描述整個晶圓廠、每個製程階段及每種不同服務等級的產品三者X-Factor之間的關係的方法(PXFC and XFC Theories),有了這個方法,我們便可以計算這三者的XF。
為了把產能規劃這個問題公式化,我們必須先了解PXF、各種服務等級的比例及產能利用率三者的關係,因此,我們會先對PXF模型做了一些數值的實驗,並且順便利用模擬網路PXF模型的結果跟我們的近似法比較精準度。
此外,我們將會把差別服務混合比例規劃(Priority Mix Planning)問題公式化並且藉由控制每種不同服務等級的投料速率來得到最佳獲利。我們會考慮PXF標的、產能利用率及機台工作小時等多項限制。在我們的規劃問題裡必須考慮價格跟成本兩個部份,對於價格,我們沒有多做討論只是單純以每片晶圓的價格來計算,主要是把重心放在成本計算上,不過忽略了成本中的固定成本 - 機器成本,因為機器成本並不會隨著投料速率而變動,它是一個常數,而我們把變動成本分成庫存成本與製造成本。最後,我們將會利用一些數值的實驗來觀察我們的數學模型在實務管理上能有什麼樣的潛力,比如說: 藉由控制優先混合比例(Priority Mix)或是產能利用率(Utilization)來獲得利潤並在一定的XF目標之下,甚至可以觀察成本、收入以及利潤這三者如何受我們的模型影響。
zh_TW
dc.description.abstractThe globalization of markets is forcing the semiconductor manufacturers to look for ways to improve their competitive advantages by focusing on supply chain management. The foundry fab is particularly critical in semiconductor supply chain because that represents large capital investments, usually in the range of US$1-1.5 Billion. Foundry fabs often have multiple priority levels of orders, and higher priority must be given to some urgent lots to be competitive and to satisfy customers’ demand of accelerating the speed of products entering into the market so a product mix with different multiple priority lots has different and great influence on the production system and poses a great challenge to wafer fabrication.
In order to plan priority mix, we need to know the performance of fab. To evaluate the performance of the current factory, we need to model fab performances. Among the many fab performance indices, cycle time has a significant impact on productivity learning and customer serviceability. To measure and manage cycle times, the notion of X-factor = cycle time/raw processing time has been introduced to provide a sensitive performance indicator, which is standardized across different products.
In this thesis, we consider the priority mix planning under X-Factor target constrains to obtain the best profit because that makes sure the best solution of planning problem above the specific quality of service. To mathematically formulate the priority mix planning problem, we need a fab Priority X-Factor (PXF) model to analyze the relationship between PXF, release rate and capacity utilization. In view of the modeling power of Queueing models in describing fab performances is only to give mean and variance of release rate and service time.
Our key ideas of modeling fab X-Factor are divided fab into three levels: overall fab, stages of process and individual priorities. For single stage, we adopt M/G/1: PR model as an approximation. It has a closed form to calculate for convenience but its disadvantages are ignoring the variance of release rate and cause calculation of the residual service time to lose accuracy for X-Factor we then propose ideas of modifying fab PXF model from M/G/1: PR to G/G/1: PR by adding variance term of release rate in residual service time. To calculate fab network X-Factor, we propose Priority X-Factor Contribution (PXFC) theory that describes the relationship of X-Factor between fab, stage and individual priorities. We can calculate fab X-Factor by summing stages X-Factor multiplied by relative processing time and calculate stage X-Factor by summing individual priorities’ X-Factor multiplied by relative utilization.
To obtain issues of PXF modeling for planning problem, we study some numerical experiments of PXF model to analyze the influence of release rate of each priority, numbers of priority and capacity utilization on XF. And try to compare our network PXF model to simulation results from eM-Plant under the same input data but verification is not our major goal.
We then incorporate the PXF model and issues of PXF numerical studies to formulate the planning problem. To consider the price of orders and cost in our problem formulation; for price, we calculate revenue by multiplying release rate and unit price of wafer; for cost, we ignore the fixed cost – machine cost because it is a constant and isn’t changed by release rate. We divide variable cost into inventory cost and manufacturing cost; inventory cost is controlled by WIP and manufacturing cost is calculated by multiplying release rate and unit cost of wafer. Finally, we make some numerical studies on our formulation to analyze the relation between profit, cost, revenue, and release rate of individual priorities and obtain insights of this research for managements.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:41Z (GMT). No. of bitstreams: 1
ntu-95-R93921070-1.pdf: 861264 bytes, checksum: 7b45da46f3ef16ab1500e5a082c2ce17 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Intriduction 1
1.1 Motivation 1
1.2 Leterature Servey 3
1.3 Scope of Research 5
1.4 Thesis Organization 8
Chapter 2 X-Factor Target Constrained Priority Mix Planning Problem 9
2.1 Priority Mix Planning Problem Description 9
2.1.1 XF Target Constrains 9
2.1.2 Priority Mix Planning Problem 10
2.1.3 Price and Cost 11
2.1.4 Needs for PXF Modeling 12
2.2 Fab PXF Modeling Problem 13
2.2.1 Single Node Modeling Problem 14
2.2.2 Network Modeling Problem 15
2.3 Challenges 17
2.4 Summary 18
Chapter 3 Methodology of Modeling Priority X-Factor 19
3.1 M/G/1: PR Queue Approximation of Single Node Model 21
3.1.1 M/G/1 with Priority Approximation 22
3.2 Model Fitting by Adjusting Residual Service Time Term 23
3.3 Priority Network Modeling: PXFC and XFC Theories 25
3.4 Summary 28
Chapter 4 Numerical Study of Priority X-Factor Model 29
4.1 Single node Experiments 29
4.1.1 Case 1: 2 Priorities 31
4.1.2 Case 2: 3 Priorities 40
4.2 Priority X-Factor Network Experiment 46
4.2.1 Tandem Network: 2 Priorities 46
4.2.2 Fab Network: Two Priority Model 49
4.3 Numerical Studies for Planning Problem 54
4.4 Summary 57
Chapter 5 Insights of XF constrained Priority Mix Planning 59
5.1 Priority Mix Planning Problem Formulation 59
5.1.1 Mathematical Problem Formulation 59
5.1.2 Toy Examples 64
5.1.2.1 Case 1: 2 Priorities 64
5.1.2.2 Case 2: 3 Priorities 65
5.2 Numerical Studies of XF Target Constrained Priority Mix Planning 66
5.3 Summary 72
Chapter 6 Conclusions and Future Work 73
6.1 Conclusions 73
6.2 Future Works 76
Appendix A: M/G/1 with Priority Approximation 77
References 81
dc.language.isoen
dc.subjectX-因子zh_TW
dc.subject差別服務比例zh_TW
dc.subjectPriority Mixen
dc.subjectX-Factoren
dc.title具X-因子目標限制的差別服務混合比例規劃之研究zh_TW
dc.titleX-Factor Target Constrained Priority Mix Planningen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正剛,陳武吉
dc.subject.keyword差別服務比例,X-因子,zh_TW
dc.subject.keywordPriority Mix,X-Factor,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
841.08 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved