Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32687
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張帆人(Fan-Ren Chang)
dc.contributor.authorGian-Bin Linen
dc.contributor.author林嘉濱zh_TW
dc.date.accessioned2021-06-13T04:13:31Z-
dc.date.available2008-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation[1] M. Hollreiser, “Galileo Receivers – Challenges and Performance,” 34th European Microwave Conference – Amsterdam, 2004.
[2] R. Prasad, M. Ruggieri, “Applied Satellite Navigation Using GPS, Galileo, and Augmentation Systems,” (Artech House, 2005)
[3] P. Misra, P. Enge, “Global Positioning System: Signals, Measurements, and Performance,” Ganga-Jamuna Press, Lincoln, 2001.
[4] http://www.galileoju.com “Galileo standardisation document for 3GPP,” (Quebec, Canada, May 23-27 2005)
[5] http://gps.ece.cornell.edu/galileo/
[6] http://en.wikipedia.org/wiki/WGS84
[7] J. W. BETZ, “Binary Offset Carrier Modulations for Radio-navigation,” Journal of ION, Vol. 48, No. 4, Winter 2001–2002.
[8] A. R. Pratt, “BOC Modulation Waveforms,” ION GPS 2003.
[9] M. Irsigler, B. Eissfeller, “Comparison of Multipath Mitigation Techniques,” ION GPS 2003.
[10] G. A. McGraw, “GNSS Multipath Mitigation Using Gated and High Resolution Correlator Concepts,” ION NTM1999.
[11] P.A.Dafesh,“Coherent Adaptive Subcarrier Modulation(CASM) For GPS Modernization,” Aerospace Corporation.
[12] http://waas.stanford.edu/GalileoCode/
[13] J. B. Y. Tsui, “Fundamentals of Global Positioning System Receivers – A software approach,” (John Wiley & Sons, Canada, 2000)
[14] http://www.navcen.uscg.gov/gps/almanacs.htm
[15] http://www.hometownusa.com/az/Yuma.html
[16] P. Rinder, “ Design of A Single Frequency GPS Software Receiver,” Aalborg University 2004.
[17]http://www.rakon.com/models/display_model?model_id=158&action=display&reset=1
[18] A. R. Pratt, “A New Class of Spreading Codes Exhibiting Low Cross-Correlation Properties,” ION GPS 2002.
[19] D. Broughton, “GNSS – A Users’ Perspective in 2010,” 46th International Symposium Electronics in Marine 2004.
[20] Report of Galileo Correspondence Group http://www.galileoju.com/page.cfm?voce=s2&idvoce=64&plugIn=1
[21] “Loyola de Palacio Welcomes the Outcome of EU/US Discussions on Galileo,” IP/04/264, Brussels, Belgium, 25.02.2004.
[22] “Progress in Galileo-GPS Negotiations” IP/04/173, Brussels, Belgium, June 2, 2004.
[23] http://ec.europa.eu/dgs/energy_transport/galileo/index_en.htm
[24] “Galileo Mission High Level Definition,” EC/ESA September 2002.
[25] “Galileo Open Service – Signal In Space Interface Control Document (OS SIS ICD),” http://www.galileoju.com/page2.cfm
[26] http://www.heavens-above.com/orbitdisplay.asp?satid=28922
[27] S. Haykin, ”Communication System 4th,” John Wilev & Sons, 2001.
[28] B. Hofmann-Wellenhof, “Global Positioning System,”Springer-Verlag/Wien, 1997.
[29] T. Cinar,”Contribution of Galileo to Search and Rescure,” 2005 IEEE.
[30] A. Pinker, C.Smith,”Galileo : It Turns!,” 2000 IEEE.
[31] P. Fine,”Tracking Algorithm for GPS Offset Carrier Signals,” ION NTM 1999.
[32] P. M.Fishman,”Predicting Performance of Direct Acquisition for the M-Code Signal,”ION NTM2000.
[33] J. W. Betz, ”Design and Performance of Code Tracking for the GPS M Code Signal,”ION GPS 2000.
[34] J. W. Betz, ”The Offset Carrier Modulation for GPS Modernization,” ION NTM 1999.
[35] S. Fischer, ”Acquisition Concepts for Galileo BOC(2,2) Signals in Consideration of Hardware Limitations,”2004 IEEE.
[36] C. Hegarty, “Multipath Performance of the New GNSS Signals,”ION NTM 2004.
[37] F. V. Diggelen,”Indoor GPS Technology,”CTIA Wireless-Agenda, Dallas, May2001.
[38] B. Eissfeller, ”Implementation and Simulation of a Mass-Market GPS/Galileo Single Point Positioning Receiver,”ION NTM 2005.
[39] 蔡宜學,「GPS/GLONASS 整合式之導航系統」,台大電機所碩士論文,中華民國89年。
[40] 繆紹綱,「通訊系統模擬SystemView使用入門-by ELANIX」,全華科技圖書股份有限公司,中華民國88年。
[41] H. L. Van Trees,”Detection, Estimation, and Modulation Theory, Part 1,” John Wiley& Sons Inc., 2001.
[42] 陳安邦,「搜尋微弱GPS信號演算法之設計與驗證」,台大電機所碩士論文,中華民國94年。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32687-
dc.description.abstract全球導航衛星系統(Global Navigation Satellites System; GNSS),乃泛指所有以衛星為基礎的導航系統。目前在太空中運行的衛星導航系統除美國GPS衛星系統、俄國GLONASS衛星系統外,歐洲加利歐(Galileo)衛星系統也正如火如荼的開始設置系統,預計在2008年底系統架設完畢。
加利歐(Galileo)衛星系統是EC和ESA所規劃設計發展的一個全球性、全天候,多項服務的三維空間即時定位系統。其技術部份是由JU(Joint Undertaking)所控管。利用三角定位原理以取得接收機之位置; 並藉由定位系統提供多樣性的服務。
加利歐系統所廣播的星曆資料係採用GTRF(Galileo Terrestrial Frame System)座標系統與GST(Galileo System Time)時間系統; 在訊號傳送上除採用分碼多工(CDMA)方式外,訊號並採用特殊的BOC調變與3G系統的引導頻道(Pilot Channel)概念; 而同一服務目的的訊號傳送頻帶少則兩個,多則三個,可以藉此抵消掉電離層與對流層效應。其衛星群共分三個軌道面,可涵蓋高、中、低緯度的地區。
加利歐衛星訊號因有特殊的BOC調變與較長的衛星碼設計,所以在訊號擷取與追蹤上有其困難性。因為較長的衛星碼導致接收機擷取訊號所能容忍的頻率誤差變小; 從GPS系統原本的每500Hz做一次訊號擷取,變成在加利歐系統擷取L1B與L1C頻道,每125Hz要做一次訊號擷取的動作。簡言之,即訊號擷取上,加利歐系統所運算的次數是擷取GPS訊號次數的四倍。這對接收機而言是一個沉重的負擔。
故我們欲探討書上所說,訊號擷取搜尋頻率為正負5k的合理性。對GPS而言,因為每500Hz做一次訊號擷取,所以對搜詢的頻帶範圍多1~2kHz不在意; 但對加利歐系統而言,每多1kHz的搜尋範圍,則需得增加8次訊號擷取運算量。這將會大大增加訊號擷取時間。所以欲藉由計算衛星相對定點接收機運動,實際都卜勒頻率變化範圍,來討論接收機在訊號擷取上,其上下限應為何才合理。也將在論文最後,討論其它可能影響到接收機訊號擷取運算次數的因素。
zh_TW
dc.description.abstractGNSS (Global Navigation Satellites System) is the general meaning of the satellites-based navigation system. The available two systems include GPS (Global Positioning System) of the United States and GLONASS (Global Navigation Satellites System) of the Russia right now; and another system, Galileo, will be set up well in 2008.
Galileo is a global, all-weather and twenty-four-hours, precise three-dimensional navigation system, which developed by JU (Joint Undertaking) of ESA.GTRF (Galileo TeRrestrial Frame System) coordinate and GST (Galileo System Time) time system are adopted in Galileo. The signal transmitted by the techniques of CDMA (Code Division Modulation Access), BOC (Binary Offset Carrier) Modulation, and pilot channel. And there are two or three channels existed for one particular service; user can recover signal from these channel to reduce ionosphere and troposphere effects. The Galileo space segment is composed of a constellation of 27 satellites with 3 operational in-orbit spares.
It is difficult to acquisition of and tracking Galileo signal because of BOC modulation and longer code length. We do GPS signal acquisition each 500Hz in 5k Hz of carrier frequency; but we must do Galileo signal acquisition each 125Hz in L1B and L1C channel. In other words, in GPS system, the acquisition times is 21 in 5k Hz, but it is 80 in Galileo system; it is a large sum.
Then we think about why we must search the frequency area in 5k Hz? For GPS system, we do acquisition each 500Hz in GPS signal, so we careless of search frequency area. But we do acquisition each 125Hz in Galileo signal; if we reduce search frequency area, such as 1k Hz, we can decrease acquisition 8 times.
We calculate doppler frequency which cause by Galileo satellite moves in it’s orbit relative to fixed position in earth. And we want to find the reasonal search frequency area in GPS and Galileo system.
Finaly, we drew some conclusions about reducing search frequency area.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:31Z (GMT). No. of bitstreams: 1
ntu-95-R93921063-1.pdf: 3475623 bytes, checksum: aa76f4e5d979a621e246c87d5d624adb (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要............................................. I
英文摘要............................................. II
目錄................................................. III
圖目錄............................................... V
表目錄............................................... VII
第一章 緒論.......................................... 1
1.1 研究背景............................................... 1
1.2 研究方向............................................... 2
1.3 論文架構............................................... 2
第二章 加利略衛星導航系統............................ 5
2.1 加利略系統計畫......................................... 7
2.2 加利略系統之服務....................................... 8
2.2.1 開放式服務........................................ 9
2.2.2 生命安全服務...................................... 9
2.2.3 商業服務.......................................... 11
2.2.4 政府公用服務...................................... 11
2.2.5 搜救與援助服務.................................... 12
2.3 加利略系統之組成....................................... 13
2.3.1 太空部門.......................................... 13
2.3.2 地面部門.......................................... 14
2.3.3 區域部門.......................................... 14
第三章 加利略訊號.................................... 17
3.1 訊號頻譜............................................... 17
3.1.1 頻譜介紹.......................................... 18
3.1.2 各載頻所攜帶的服務及其特性........................ 18
3.2 訊號架構............................................... 22
3.2.1 GPS訊號.......................................... 22
3.2.2 BOC(m,n)調變...................................... 23
3.2.3 加利略訊號........................................ 24
3.2.4 加利略L1頻帶的訊號組成........................... 27
3.2.5 BOC調變的訊號特性................................ 29
3.2.6 加利略訊號總結.................................... 31
3.3 衛星碼................................................. 32
3.4 訊息................................................... 36
3.4.1 加利略系統座標(GTRF) ............................. 36
3.4.2 加利略系統時間.................................... 36
第四章 加利略訊號擷取................................ 39
4.1 加利略訊號擷取......................................... 39
4.1.1 傳統訊號擷取方法.................................. 39
4.1.2 並行式訊號擷取法.................................. 41
4.1.3 訊號擷取運算次數.................................. 44
4.2 都卜勒頻率之計算....................................... 46
4.2.1 座標轉換.......................................... 47
4.2.2 衛星運動向量...................................... 49
4.2.3 接收機運動向量.................................... 50
4.2.4 衛星相對接收機運動產生之都卜勒頻率................ 52
4.2.5 代入衛星資訊...................................... 53
4.2.6 格林威治與春分點夾角 ............................
55
4.2.7 衛星週期與地球自轉週期............................ 59
4.2.8 訊號擷取之搜尋範圍................................ 59
4.3 SystemView模擬結果..................................... 60
4.3.1 模擬環境.......................................... 60
4.3.2 模擬設定.......................................... 62
4.3.3 模擬結果.......................................... 66
4.3.4 頻率誤差對SNR的影響............................. 68
4.3.5 討論.............................................. 69
第五章 結論與未來展望............................. 71
5.1 結論................................................ 71
5.2 未來展望............................................ 73
參考文獻.......................................... 75
dc.language.isozh-TW
dc.subject加利歐zh_TW
dc.subject加利略zh_TW
dc.subject伽利略zh_TW
dc.subjectGalileoen
dc.title加利略衛星導航系統與其訊號擷取zh_TW
dc.titleGalileo Satellite Navigation System and Signal Acquisitionen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor曹恆偉(Hen-Wai Tsao)
dc.contributor.oralexamcommittee王立昇(Li-Sheng Wang),林君明(Jium-Ming Lin),唐望(Wang Tang)
dc.subject.keyword加利歐,伽利略,加利略,zh_TW
dc.subject.keywordGalileo,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved