Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽彥正(Yen-Jen Oyang)
dc.contributor.authorChun-Lu Hsiaoen
dc.contributor.author蕭軍律zh_TW
dc.date.accessioned2021-06-13T04:13:21Z-
dc.date.available2008-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation1. Madabushi, S., et al., Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J Biol Chem, 2004. 279(9): p. 8126-32.
2. Sowa, M.E., et al., Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat Struct Biol, 2001. 8(3): p. 234-7.
3. Lichtarge, O., H.R. Bourne, and F.E. Cohen, An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol, 1996. 257(2): p. 342-58.
4. Jones, S. and J.M. Thornton, Principles of protein-protein interactions. Proc Natl Acad Sci U S A, 1996. 93(1): p. 13-20.
5. Chakrabarti, P. and J. Janin, Dissecting protein-protein recognition sites. Proteins, 2002. 47(3): p. 334-43.
6. Nooren, I.M. and J.M. Thornton, Diversity of protein-protein interactions. Embo J, 2003. 22(14): p. 3486-92.
7. Ofran, Y. and B. Rost, Analysing six types of protein-protein interfaces. J Mol Biol, 2003. 325(2): p. 377-87.
8. Jones, S. and J.M. Thornton, Prediction of protein-protein interaction sites using patch analysis. J Mol Biol, 1997. 272(1): p. 133-43.
9. Poupon, A., Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr Opin Struct Biol, 2004. 14(2): p. 233-41.
10. Ofran, Y. and B. Rost, Predicted protein-protein interaction sites from local sequence information. FEBS Lett, 2003. 544(1-3): p. 236-9.
11. Chen, H. and H.X. Zhou, Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins, 2005. 61(1): p. 21-35.
12. Fariselli, P., et al., Prediction of protein--protein interaction sites in heterocomplexes with neural networks. Eur J Biochem, 2002. 269(5): p. 1356-61.
13. Halperin, I., et al., Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 2002. 47(4): p. 409-43.
14. Keskin, O., et al., Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions. Protein Sci, 1998. 7(12): p. 2578-86.
15. Gallet, X., et al., A fast method to predict protein interaction sites from sequences. J Mol Biol, 2000. 302(4): p. 917-26.
16. Zhou, H.X. and Y. Shan, Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins, 2001. 44(3): p. 336-43.
17. Dodge, C., R. Schneider, and C. Sander, The HSSP database of protein structure-sequence alignments and family profiles. Nucleic Acids Res, 1998. 26(1): p. 313-5.
18. Mucchielli-Giorgi, M.H., S. Hazout, and P. Tuffery, PredAcc: prediction of solvent accessibility. Bioinformatics, 1999. 15(2): p. 176-7.
19. Naderi-Manesh, H., et al., Prediction of protein surface accessibility with information theory. Proteins, 2001. 42(4): p. 452-9.
20. Yan, C., D. Dobbs, and V. Honavar, A two-stage classifier for identification of protein-protein interface residues. Bioinformatics, 2004. 20 Suppl 1: p. I371-I378.
21. Holm, L. and C. Sander, The FSSP database: fold classification based on structure-structure alignment of proteins. Nucleic Acids Res, 1996. 24(1): p. 206-9.
22. Kabsch, W. and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983. 22(12): p. 2577-637.
23. YY, Ou. 2004.
24. Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 1999. 292(2): p. 195-202.
25. Sen, T.Z., et al., Predicting binding sites of hydrolase-inhibitor complexes by combining several methods. BMC Bioinformatics, 2004. 5(1): p. 205.
26. Ahmad, S. and A. Sarai, PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics, 2005. 6(1): p. 33.
27. Yan, C., et al., Predicting DNA-binding sites of proteins from amino acid sequence. BMC Bioinformatics, 2006. 7(1): p. 262.
28. Rost, B. and C. Sander, Conservation and prediction of solvent accessibility in protein families. Proteins, 1994. 20(3): p. 216-26.
29. Goldstein, R.A., Z.A. Luthey-Schulten, and P.G. Wolynes, Optimal protein-folding codes from spin-glass theory. Proc Natl Acad Sci U S A, 1992. 89(11): p. 4918-22.
30. Res, I., I. Mihalek, and O. Lichtarge, An evolution based classifier for prediction of protein interfaces without using protein structures. Bioinformatics, 2005. 21(10): p. 2496-501.
31. Wang, B., et al., Predicting protein interaction sites from residue spatial sequence profile and evolution rate. FEBS Lett, 2006. 580(2): p. 380-4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32678-
dc.description.abstract蛋白質之間的交互作用在生物資訊學上扮演很重要的角色,特別是這交互作用可以調節巨分子複合物的形成,或是調節一系列的訊息傳遞過程。若要了解這些功能的分子層次及蛋白質網絡,確認這些個別的蛋白質交互作用區段就顯得很有意義。
在後基因體時代,已知的蛋白質序列與日俱增但是相對解出蛋白質結構的速度卻遠遠比不上蛋白質序列的產生速度,所以從蛋白質的序列去預測蛋白質的作用區段是一個很有意義的題目,且在某些情況下,更能幫助蛋白質去建構其與其它蛋白質結合後的結構。
近幾年來,有越來越多的研究是從蛋白質的序列來預測蛋白質的作用區段,而在不同種類的蛋白質作用區段裡,各自發展了許多不同的預測方法,但少有預測方法是針對不分類的作用區段來做預測,本論文主要探討如何在不對蛋白質作用區段作分類的情況下,從蛋白質序列去預測作用區段的胺基酸。我們研究了除了有關蛋白質在作用區段的胺基酸組成成份和其功能的保守性,另外加入了二級結構相關的資訊,經過機械學習的分類演算法─徑向基函數網絡,來做蛋白質作用區段的預測。最後,由實驗結果證明這些特徵集對預測蛋白質作用區段是有幫助的。
zh_TW
dc.description.abstractProtein interactions play an important role in bioinformatics since they mediate the assembly of macromolecular complexes, or the sequential transfer of information along signaling pathways. To understand the molecular basis of these functions and of protein networks, it is important to identify the individual protein interface.
In the post-genomics era, the known protein sequences are increasingly but the relative increasing rate of the solved protein structures is lower. Therefore, it’s meaningful to predict the protein interface from their sequences, and also the prediction can be benefit to construct the conformation of one protein which is bound to another under a certain conditions.
In recent years, more and more studies focus on the prediction of protein interface from protein sequences directly. Many methods among these studies are developed according to the different kinds of protein interface. However, fewer methods are used to predict without classifying the protein interface into several categories. In my thesis, the compositions and conserved functions of the amino acids in the protein interface are studied and also the information of secondary structures is added. Last, we use radio basis function network to predict the protein interface and the results of experiment are also shown that these feature sets are useful for the prediction.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:21Z (GMT). No. of bitstreams: 1
ntu-95-R93922133-1.pdf: 540457 bytes, checksum: 23e3992c096ffc7a019fa32a5c9b5011 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 緒論 1
1.1蛋白質作用區段預測的興起 1
1.2 背景 2
1.3 研究動機 2
1.4 論文架構 3
Chapter 2 相關研究 4
2.1 作用區段特性 4
2.1.2 組成蛋白質作用區段的特徵 5
2.1.3 蛋白質作用區段的群聚效應 5
2.1.4 作用區段胺基酸的組成 6
2.2 預測作用區段的方法介紹 7
2.3 序列比對工具 8
2.3.1 BLAST 8
2.3.2 BLOcks Substitution Matrix(BLOSUM) 9
2.3.3 PSI-BLAST 9
2.4 FSSP 資料集(dataset) 9
2.5 DSSP 10
2.6 .機器學習演算法種類 10
2.6.1 Radio basis Function Network 10
2.6.2 支援向量機(support vector machine) 12
2.6.3 KNN 14
2.6.4 決策樹(Decision tree) 14
2.7 二級結構 15
2.7.1 二級結構(Secondary Structure) 15
Chapter 3 預測蛋白質作用區段的方法 17
3.1 目標 17
3.2 機械學習(machine learning) 17
3.2.2 分類法的基本概念 17
3.2.3 交叉驗證(cross validation) 18
3.3 資料集 18
3.4 作用區段的定義 19
3.5 特徵(Feature) 19
3.5.1序列辨識 20
3.5.2 PSI-BLAST 20
3.5.3非表面胺基酸特徵 (Non-surface feature) 21
3.5.4 胺基酸的特性(Property) 22
3.5.5保守性(Conservation) 25
3.5.6二級結構 26
3.6 輸入資料的處理 27
3.6.1 Sampling 27
3.6.2 視窗大小(Window size) 27
3.7 特徵選擇(Feature selection) 28
3.8 分類法 28
3.9 預測結果評估方法 28
Chapter 4 實驗結果 30
4.1 實驗一:預測蛋白質作用區段(整個蛋白質) 30
4.2 實驗二:序列和R-PSSM的比較 32
4.3 實驗三:非表面胺基酸資訊 33
4.3.1 實驗 3-1 33
4.3.2 實驗3-2 34
4.4 實驗四: 胺基酸特性 36
4.4.1 單一特性分析 36
4.4.2 特性的傾向 38
4.4.3 多特性分析 39
4.4.4 特性加入NSR-PSSM的特性 40
4.5 胺基酸保守性和二級結構 42
4.6 結果 43
Chapter 5 結論與展望 45
5.1結論 45
5.2 展望 46
參考文獻 48
dc.language.isozh-TW
dc.subject作用區段zh_TW
dc.subjectinterface residuesen
dc.title利用蛋白質序列預測蛋白質作用區段zh_TW
dc.titleIdentification of Interface Residues Based on PSSM Profile and Biochemical Propertiesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃鎮剛(Jenn-Kang Hwang,),趙坤茂(Kun-Mao Chao),歐昱言(Yu-Yen Ou)
dc.subject.keyword作用區段,zh_TW
dc.subject.keywordinterface residues,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
527.79 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved