Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32652
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳培哲(Pei-Jer Chen)
dc.contributor.authorCheng-Han Chungen
dc.contributor.author鍾承翰zh_TW
dc.date.accessioned2021-06-13T04:12:55Z-
dc.date.available2021-07-27
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citationReferences
1. Seeger, C. and W.S. Mason, Hepatitis B virus biology. Microbiology and Molecular Biology Reviews, 2000. 64(1): p. 51-+.
2. Bouchard, M.J. and R.J. Schneider, The enigmatic X gene of hepatitis B virus. Journal of Virology, 2004. 78(23): p. 12725-12734.
3. Petit, M.A., et al., Hepg2 Cell Binding Activities of Different Hepatitis-B Virus Isolates - Inhibitory Effect of Anti-Hbs and Anti-Pres1(21-47). Virology, 1991. 180(2): p. 483-491.
4. Rabe, B., et al., Nuclear import of hepatitis B virus capsids and release of the viral genome. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9849-54.
5. Tuttleman, J.S., C. Pourcel, and J. Summers, Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell, 1986. 47(3): p. 451-60.
6. Hirsch, R.C., et al., Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription. Nature, 1990. 344(6266): p. 552-5.
7. Bartenschlager, R., M. Junkerniepmann, and H. Schaller, The P-Gene Product of Hepatitis-B Virus Is Required as a Structural Component for Genomic Rna Encapsidation. Journal of Virology, 1990. 64(11): p. 5324-5332.
8. Gerelsaikhan, T., J.E. Tavis, and V. Bruss, Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. Journal of Virology, 1996. 70(7): p. 4269-4274.
9. Beasley, R.P., Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer, 1988. 61(10): p. 1942-56.
10. McMahon, B.J., The natural history of chronic hepatitis B virus infection. Hepatology, 2009. 49(5 Suppl): p. S45-55.
11. McMahon, B.J., Epidemiology and natural history of hepatitis B. Semin Liver Dis, 2005. 25 Suppl 1: p. 3-8.
12. Shouval, D., et al., Chronic hepatitis in chimpanzee carriers of hepatitis B virus: morphologic, immunologic, and viral DNA studies. Proc Natl Acad Sci U S A, 1980. 77(10): p. 6147-51.
13. Walter, E., et al., Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology, 1996. 24(1): p. 1-5.
14. Tennant, B.C. and J.L. Gerin, The woodchuck model of hepatitis B virus infection. ILAR J, 2001. 42(2): p. 89-102.
15. Schultz, U., E. Grgacic, and M. Nassal, Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res, 2004. 63: p. 1-70.
16. Liu, F., Y.K. Song, and D. Liu, Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy, 1999. 6(7): p. 1258-1266.
17. Zhang, G.F., V. Budker, and J.A. Wolff, High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Human Gene Therapy, 1999. 10(10): p. 1735-1737.
18. Yang, P.L., et al., Hydrodynamic injection of viral DNA: A mouse model of acute hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(21): p. 13825-13830.
19. Chang, W.W., et al., The role of inducible nitric oxide synthase in a murine acute hepatitis B virus (HBV) infection model induced by hydrodynamics-based in vivo transfection of HBV-DNA. Journal of Hepatology, 2003. 39(5): p. 834-842.
20. Huang, L.R., et al., An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A, 2006. 103(47): p. 17862-7.
21. Wieland, S.F., et al., Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci U S A, 2004. 101(7): p. 2129-34.
22. Asabe, S., et al., The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol, 2009. 83(19): p. 9652-62.
23. Chisari, F.V. and C. Ferrari, Hepatitis B virus immunopathogenesis. Annu Rev Immunol, 1995. 13: p. 29-60.
24. Kakimi, K., et al., Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med, 2000. 192(7): p. 921-30.
25. Yang, P.L., et al., Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13825-30.
26. Yang, P.L., et al., Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci U S A, 2009. 107(2): p. 798-802.
27. Lin, Y.J., et al., Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. Proc Natl Acad Sci U S A, 2010. 107(20): p. 9340-5.
28. Chen, M.T., et al., A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc Natl Acad Sci U S A, 2004. 101(41): p. 14913-8.
29. Beck, J.A., et al., Genealogies of mouse inbred strains. Nature Genetics, 2000. 24(1): p. 23-+.
30. Grupe, A., et al., In silico mapping of complex disease-related traits in mice. Science, 2001. 292(5523): p. 1915-8.
31. Pletcher, M.T., et al., Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. Plos Biology, 2004. 2(12): p. 2159-2169.
32. Cuppen, E., Haplotype-based genetics in mice and rats. Trends in Genetics, 2005. 21(6): p. 318-322.
33. Liao, G.C., et al., In silico genetics: Identification of a functional element regulating H2-E alpha gene expression. Science, 2004. 306(5696): p. 690-695.
34. Liu, H.H., et al., An integrative genomic analysis identifies Bhmt2 as a diet-dependent genetic factor protecting against acetaminophen-induced liver toxicity. Genome Res, 2010. 20(1): p. 28-35.
35. Szatkiewicz, J.P., et al., An imputed genotype resource for the laboratory mouse. Mamm Genome, 2008. 19(3): p. 199-208.
36. Hutchins, L.N., et al., CGDSNPdb: a database resource for error-checked and imputed mouse SNPs. Database (Oxford), 2010. 2010: p. baq008.
37. Frazer, K.A., et al., A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature, 2007. 448(7157): p. 1050-3.
38. Parmigiani, G., et al., MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments, in The Analysis of Gene Expression Data, M. Gail, et al., Editors. 2003, Springer London. p. 313-341.
39. Woo, Y., et al., A comparison of cDNA, oligonucleotide, and Affymetrix GeneChip gene expression microarray platforms. J Biomol Tech, 2004. 15(4): p. 276-84.
40. Michalak, T.I., et al., Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus. Journal of Virology, 2008. 82(17): p. 8579-8591.
41. Bolstad, B.M., et al., A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003. 19(2): p. 185-93.
42. Al-Shahrour, F., et al., BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res, 2005. 33(Web Server issue): p. W460-4.
43. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.
44. Samarajiwa, S.A., et al., INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res, 2009. 37(Database issue): p. D852-7.
45. Nebert, D.W., et al., The Ah phenotype. Survey of forty-eight rat strains and twenty inbred mouse strains. Genetics, 1982. 100(1): p. 79-87.
46. Rehwinkel, J. and C. Reis e Sousa, RIGorous detection: exposing virus through RNA sensing. Science, 2010. 327(5963): p. 284-6.
47. Sadler, A.J. and B.R. Williams, Interferon-inducible antiviral effectors. Nat Rev Immunol, 2008. 8(7): p. 559-68.
48. Khan, S., et al., Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. Journal of Immunology, 2001. 167(12): p. 6859-6868.
49. Groettrup, M., et al., Immunoproteasomes are essential for survival and expansion of T cells in virus-infected mice. European Journal of Immunology, 2010. 40(12): p. 3439-3449.
50. Yang, P.L., et al., Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci U S A, 2010. 107(2): p. 798-802.
51. Biron, C.A., Interferons alpha and beta as immune regulators - A new look. Immunity, 2001. 14(6): p. 661-664.
52. Le Bon, A. and D.F. Tough, Links between innate and adaptive immunity via type I interferon. Current Opinion in Immunology, 2002. 14(4): p. 432-436.
53. Stetson, D.B. and R. Medzhitov, Type I interferons in host defense. Immunity, 2006. 25(3): p. 373-81.
54. Wieland, S., et al., Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A, 2004. 101(17): p. 6669-74.
55. Bigger, C.B., K.M. Brasky, and R.E. Lanford, DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol, 2001. 75(15): p. 7059-66.
56. Wieland, S.F. and F.V. Chisari, Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol, 2005. 79(15): p. 9369-80.
57. Meylan, E., et al., Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005. 437(7062): p. 1167-1172.
58. Bigger, C.B., et al., Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J Virol, 2004. 78(24): p. 13779-92.
59. Takahashi, K., et al., Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci U S A, 2010. 107(16): p. 7431-6.
60. Carrington, M., et al., Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature, 2009. 461(7265): p. 798-U52.
61. Lanford, R.E., et al., Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(27): p. 11223-11228.
62. Guo, X., et al., Strong influence of human leukocyte antigen (HLA)-DP gene variants on development of persistent chronic hepatitis B virus carriers in the Han Chinese population. Hepatology, 2009. 53(2): p. 422-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32652-
dc.description.abstract人類B型肝炎病毒感染後的結果與宿主的遺傳背景有關,儘管在同年齡感染B型肝炎病毒,有些人能夠將B型肝炎病毒清除,有些人則會形成慢性帶原者,但造成差異的調控機制與免疫反應,至今還不清楚。先前在高壓水動力注射的小鼠模式中發現,BALB/cJ小鼠能在注射後四周內快速的清除B型肝炎病毒,而同一時間內大部份的C57BL/6J小鼠則會持續性表現注入質體所包含的B型肝炎病毒。由於兩種小鼠飼養在相似的環境之中,所以我假設是兩種小鼠品系間的遺傳變異造成了不同的實驗結果。本研究目的即利用全基因表現量微陣列及自交品系小鼠所建構之遺傳圖譜兩種篩選方法,找尋造成實驗結果不同所參與的基因及調控機制。
在全基因表現量微陣列的結果中發現,BALB/cJ小鼠在注射B型肝炎病毒表現質體六小時與十八小時後,受第一型干擾素活化的基因表現量有顯著的上升。然而,第一型干擾素本身的改變則並不明顯。在適應性免疫相關基因的表現上,BALB/cJ小鼠在注射後第五天也有顯著地提高。適應性免疫的活化造成了BALB/cJ小鼠中B型肝炎病毒的清除與過去的研究結果相符,但第一型干擾素所參與的先天性免疫反應對與B型肝炎病毒感染所扮演的角色,在本研究中仍然無法清楚的證明,未來仍需要更多的實驗來釐清第一型干擾素的反應機制。
而在自交品系小鼠遺傳圖譜分析中,我們紀錄了11個自交品系在注射後八週的B型肝炎病毒清除趨勢,並利用這些小鼠所建構的遺傳圖譜找出與清除趨勢具高相關性的基因座。分析結果顯示在第8號染色體上92.98 Mb到94.57 Mb的位置與性狀分布有最高的相關性,此區段包含了Chd9、 Rbl2、 Aktip、 Rpgrip1l、 Fto及Irx3等六個基因。在各品系中B型肝炎病毒的表現性狀,以及定位圖譜的建構,都還有待進一步的實驗及分析增加定位的可信度。
zh_TW
dc.description.abstractThe clinical outcomes after hepatitis B virus (HBV) exposure vary a lot among individuals. While some people rapidly clear the virus and generate effective antibodies against HBV, others fail to do so and become chronically infected. It is suggested that the differences among individuals may be contributed by their genetic variations. Nevertheless, the underlying genetic components, which may contribute to HBV clearance/persistence, are not known of.
Using a hydrodynamic-based and immune competent mouse model, our group previously demonstrated that different inbred mouse strains have different response after HBV injection. The BLAB/cJ strain was able to eliminated HBV plasmid to an undetectable level two to three weeks after hydrodynamic injection, while 80% of C57BL/6J strain failed to clear the virus four weeks after injection. In order to systematically survey the underlying genetic components corresponding to HBV clearance in mouse, two strategies were applied, i.e. whole genome expression profile by microarray and in silico mapping.
For expression microarray, I found that interferon-stimulated genes (ISGs) were significantly up-regulated in BALB/cJ at 6 and 18 hours after injection. In addition, expression levels of adaptive immune related genes were elevated in liver of BALB/cJ five days after injection. It has been proposed that the initiation of adaptive immunity against HBV is responsible for the viral clearance. The current study suggests that innate immunity may play an important role for HBV clearance. Nevertheless, there was only limited induction of type I interferon and was not significantly different between BALB/cJ and C57BL/6J. Therefore, how type I interferon involved in HBV infection is not clear at the moment and may need further investigation.
For in silico mapping, a total of 11 inbred mouse strains were selected for analysis. The clearance patterns within eight weeks after HBV injection were served as the phenotypic trait and correlated to haploblocks constructed by CGD1 mouse SNP data set. One locus located at 92.98 Mb to 94.57Mb on chromosome 8 exhibits highest correlation score. This region contains six annotated genes, including Chd9, Rbl2, Aktip, Rpgrip1l, Fto, and Irx3. I found that the results of in silico mapping are strongly affected by phenotype defined, inbred strain used, and method of haploblock construction applied. In order to improve the results, one should try to use different phenotypes and more rigorous haploblock construction methods in further study.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:12:55Z (GMT). No. of bitstreams: 1
ntu-100-R97445133-1.pdf: 3542835 bytes, checksum: f113f67b10c99f01288dafed7f5242b3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖次 ix
表次 xi
第一章 序論 1
1.1 B型肝炎病毒簡介 1
1.2 B型肝炎病毒的感染與發病情形 2
1.3 B型肝炎病毒持續性表現的小鼠模式 2
1.4 B型肝炎病毒所引發的免疫反應 3
1.5 全基因體篩檢分析 4
1.6 實驗假設與目的 6
第二章 材料與方法 7
2.1 質體製備 7
2.2 B型肝炎病毒持續性表現的小鼠模式 7
2.3 RNA 與cDNA的製備 8
2.4 微陣列的實驗設計 8
2.5 Real-time PCR 9
2.6 小鼠基因體SNP及haplotype建構 9
2.7 統計分析 10
第三章 結果 11
3.1 微陣列的實驗設計、質量控管及基本組成 11
3.1.1 以先天性免疫及適應性免疫的可能發生時間決定偵測時間 11
3.1.2 微陣列的探針組成及雜合品質評估 11
3.2 不同時間點兩個小鼠品系基因表現的差異 12
3.2.1 在6hr及18hr兩個採樣時間的基因表現量分析 12
3.2.2 在注射後第五天的基因表現量分析 13
3.2.3 在同品系各採樣時間的表現量比較分析 14
3.2.4 釐清type I interferon及RIG-I訊息傳遞路徑對於轉染HBV清除的影響及機制轉染B型肝炎病毒所引發type I interferon的定量檢驗 15
3.2.5 在DBA/2J小鼠品系中過量表現RIG-I會加速HBsAg的清除 16
3.3 利用已被證實的性狀及影響性狀的基因來驗證haplotype的建構 16
3.3.1 在不同小鼠近交品系之間的SNP建構haplotype 16
3.3.2 以連續性狀來展示haplotype的建構具有足夠的預測能力 17
3.3.3 以二項分布性狀來展示haplotype的建構具有足夠的預測能力 17
3.4 以建構圖譜分析各品系間HBV清除能力性狀 18
3.4.1 定義小鼠對HBV清除能力性狀 18
3.4.2 11個品系間的HBV清除性狀與haplotype block的相關性分析 19
3.4.3 扣除SM/J或SM/J、FVB/NJ後的HBV清除性狀與haplotype block的相關性分析 19
第四章 討論 21
4.1 B型肝炎病毒的轉染會引發小鼠的先天性免疫反應 21
4.2 BALB/cJ品系在注射後第五天啟動了適應性免疫反應 22
4.3 RIG-I表現質體的過量表現能有效促進B型肝炎病毒的清除 23
4.4 Type I interferon的活化在B型肝炎病毒清除過程中的角色 24
4.5 利用自交品系小鼠間SNP建構的定位圖譜可有效的找出已知性狀的相關基因 26
4.6 自交品系小鼠對B型肝炎病毒清除能力的性狀分布與定義對分析結果的影響 26
4.7 QTL (quantitative trait loci) mapping與 in silico mapping的分析結果比較 27
參考文獻……………………………………………………………………………….29
實驗圖表……………………………………………………………………………….33
dc.language.isozh-TW
dc.subject第一型干擾素zh_TW
dc.subjectB型肝炎病毒zh_TW
dc.subject高壓水動力注射zh_TW
dc.subject全基因表現量微陣列zh_TW
dc.subject全基因定位zh_TW
dc.subjecthydrodynamic injectionen
dc.subjecttype I interferonen
dc.subjectin silico mappingen
dc.subjectwhole-genome expression arrayen
dc.subjectHepatitis B virusen
dc.title以非轉殖小鼠模式進行B型肝炎病毒感受性之基因體分析zh_TW
dc.titleGenome-wide analysis of HBV susceptibility in a non-transgenic mouse modelen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor王弘毅(Hurng-Yi Wang)
dc.contributor.oralexamcommittee葉秀慧(Shiou-Hwei Yeh),高振宏(chen-hung kao)
dc.subject.keywordB型肝炎病毒,高壓水動力注射,全基因表現量微陣列,全基因定位,第一型干擾素,zh_TW
dc.subject.keywordHepatitis B virus,hydrodynamic injection,whole-genome expression array,in silico mapping,type I interferon,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved