Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32622
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復(Cheng-Fu Chou)
dc.contributor.authorBo-Chun Wangen
dc.contributor.author王柏鈞zh_TW
dc.date.accessioned2021-06-13T04:12:27Z-
dc.date.available2008-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-24
dc.identifier.citation[1] K. M. Hanna, N. Natarajan, and B. N. Levine, “Evaluation of a novel two-step server selection metric,” In Proc. IEEE Conference on Network Protocols (ICNP), Oct. 2001.
[2] L. Breslau, E. Knightly, S. Shenker, and I. Stoica, “Endpoint admission control: Architectural issues and performance,” In Proc. ACM SIGCOMM, 2000.
[3] Jain, M., Dovrolis, C.: Pathload: an available bandwidth estimation tool. In: PAM. (2002)
[4] Ribeiro, V.: pathChirp: Efficient Available Bandwidth Estimation for Network Path. In: PAM. (2003)
[5] Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth estimation tools. In: IMW. (2003)
[6] R. L. Carter and M. E. Crovella, “Measuring Bottle-neck Link Speed in Packet-Switched Networks,' Per-formance Evaluation, vol. 27,28, pp. 297{318, 1996.
[7] G. Jin, G. Yang, B. Crowley, and D. Agarwal, “Network Characterization Service (NCS),' in Proceedings of 10th IEEE Symposium on High Performance Distributed Computing, Aug. 2001.
[8] C. Dovrolis, P. Ramanathanm, and D. Moore. What Do Packet Dispersion Techniques Measure? In IEEE INFOCOM'01, 2001.
[9] N. Hu and P. Steenkiste. Evaluation and Characterization of Available Bandwidth Techniques. IEEE JSAC Special Issue in Internet and WWW Measurement, Mapping, and Modeling, 2003.
[10] V. J. Ribeiro, M. Coates, R. H. Riedi, S. Sarvotham, and R. G. Baraniuk. Multifractal cross traffic estimation. In Proc. of ITC specialist seminar on IP traffic Measurement, September 2000.
[11] B. Melander, M. Bjorkman, and P. Gunningberg. A New End-to-End Probing and Analysis Method for Estimating Bandwidth Bottlenecks. In Global Internet Symposium, 2000.
[12] N. Hu and P. Steenkiste. Evaluation and Characterization of Available Bandwidth Techniques. IEEE JSAC Special Issue in Internet and WWW Measurement, Mapping, and Modeling, 2003.
[13] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/
[14] D. Spring, R. Mahajan, and D. Wetherall, 'Measuring ISP Topologies with Rocketfuel,' in Proceedings of ACM/SIGCOMM '02, Aug 2002.
[15] T. Karagiannis, D. Papagiannaki, and M. Faloutsos, “Blinc:Multilevel traffic classification in the dark,” in SIGCOMM2005
[16] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service mapping for QoS: A statistical signature-based approach to IP traffic classification. In IMC, Oct. 2004.
[17] The R Project for Statistical Computing, http://www.r-project.org/
[18] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingess. e1071: Misc Functions of theDepartment of Statistics (e1071), TU Wien. http://cran.r-project.org/src/contrib/PACKAGES.html#e1071
[19] Rohit Kapoor, Ling-Jyh Chen, Li Lao, Mario Gerla, and M. Y. Sanadidi. CapProbe: A Simple and Accurate Capacity Estimation Technique. ACM SIGCOMM 2004, Portland, USA, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32622-
dc.description.abstract一條路徑的可用頻寬即為連結中最小未使用的頻寬。可用頻寬的估計對於許多應用程式是相當有用的,例如繞徑選擇,伺服器選擇,管理控制等等。近年來,許多用來改進可用頻寬估計的工具被提出。其中兩個非常受歡迎的模型分別是探查缺口模型和探查速率模型。因為利用這兩個模型的工具已經變得成熟,我們把這兩個模型與統計方法結合起來,並提出一個工具。
我們工具的基本想法是我們能在不同的可用頻寬下收集許多不同的資料。 在收集足夠的資訊之後,我們使用統計方法分析這些數據,並且使用其結果估計可用頻寬。在我們的模擬過程中,我們使用兩種方法來收集數據,包括散佈,封包損失比率等等。然後我們使用SVM訓練這些屬性,並且估計可用頻寬。在這篇文章裡,我們詳細描述我們的工具,並且顯示一些結果來說明工具的準確度。
zh_TW
dc.description.abstractThe available bandwidth of a path is determined by the link with the minimum unused bandwidth. The estimation of available bandwidth is useful for many applications, such as route selection, server selection, admission control, and etc. In recent years, there are many tools that have been proposed to improve the estimation of available bandwidth. The two most popular models are the probe gap model and the probe rate model. Since tools based on these two models have become mature, we propose a tool that combines statistical methods with these two models.
The basic idea of our tool is that we can collect many different data under different available bandwidth. After collecting enough information, we use statistical methods to analyze these data and use results to estimate available bandwidth. In our simulation, we use two methods to collect data, including dispersions, packet loss rate, and etc. Then we use SVM to train these attributes and estimate available bandwidth. In this paper, we describe our tool in detail, and show some results to illustrate the tool’s accuracy.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:12:27Z (GMT). No. of bitstreams: 1
ntu-95-R93922021-1.pdf: 696154 bytes, checksum: e67b9619fa1551bc83022dce4213ab2d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAbstract 1
TABLE OF CONTENTS 2
LIST OF TABLES 3
LIST OF FIGURES 4
Chapter 1 Introduction 5
1.1 Background 5
1.2 Motivation 6
1.3 Problem Description 7
1.4 Thesis Organization 9
Chapter 2 Related Works 10
2.1 The Probe Gap Model (PGM) 10
2.2 The Probe Rate Model (PRM) 12
Chapter 3 Machine Learning Based Model 14
3.1 Topology and Scenarios Used 14
3.2 Probing Models 17
3.3 Supervised Learning and Tool 18
Chapter 4 Performance Evaluation 20
4.1 The Result of Packet Train Model 20
4.2 The Result of Pathchirp Model 23
4.3 The Normalized Method 30
4.4 Compare with Pathchirp 32
Chapter 5 Conclusion and Future Work 37
5.1 Conclusion 37
5.2 Future Work 37
Bibliography 39
dc.language.isoen
dc.subject機器學習zh_TW
dc.subject可用頻寬zh_TW
dc.subject測量zh_TW
dc.subjectavailable bandwidthen
dc.subjectestimationen
dc.subjectmachine learningen
dc.title以機器學習為基礎之可用頻寬測量方法zh_TW
dc.titleA Machine Learning Based Approach for Available Bandwidth Estimationen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor陳伶志(Ling-Jyh Chen)
dc.contributor.oralexamcommittee楊佳玲(Chia-Lin Yang),蔡子傑(Tzu-Chieh Tsai)
dc.subject.keyword可用頻寬,機器學習,測量,zh_TW
dc.subject.keywordavailable bandwidth,machine learning,estimation,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
679.84 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved