請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32616
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林正芳 | |
dc.contributor.author | Long-Chen Fang | en |
dc.contributor.author | 方隆誠 | zh_TW |
dc.date.accessioned | 2021-06-13T04:12:22Z | - |
dc.date.available | 2007-07-30 | |
dc.date.copyright | 2006-07-30 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-24 | |
dc.identifier.citation | Allie Z., Jacobs E.P., Maartens A. and Swart P. (2003). Enzymatic cleaning of ultrafiltration membranes fouled by abattoir effluent. J. Membr. Sci., 218(1-2), 107-116.
Adham S. S., Snoeyink V. L., Clark M. M. and Anselme C. (1993). Predicting and verifying TOC removal by PAC in pilot-scale UF system. J. Am. Water Works Ass. 85(12), 58-68. Ammsei S., Newcombe G., Hepplewhite C. and Beckett R. (2004) Characterization of natural organic matter fractions separated by ultrafiltration using flow field-flow fractionation. Water Res., 38(6), 1467-1476. Amy G. L., Collins M. R., Kuo C. J. and King P.H. (1987). Comparing gel permeation chromatography andultrafiltra tion for the molecular weight characterization of aquatic organic matter. J. Am. Water Works Ass., 79(1), 43-9. Ang W. S., Lee S. and Elimelech. (2005). Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. J. Membr. Sci., 272(1-2), 198-210. Argüello M.A., Alvares S., Riera F.A. and Alvares R. (2003). Enzymatic cleaning of inorganic ultrafiltration membranes used for whey protein fractionation. J. Membr. Sci., 216(1-2), 121-134 Bhattacharjee C. and Datta S. (1997). A mass transfer model for prediction of reject and flux during ultrafiltration of PEG-6000. J. Membr. Sci., 125(2), 303-310. Bourgeous K. N., Darby J. L. and Tchobanoglous G. (2000). Ultrafiltration of watewater:effects of particles, model of operation, and backwash effectiveness. Water Sci. Technol., 35(1), 77-90. Bowen W. R., Calvo J. I. and Hernandez, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. J. Membr. Sci., 101(1-2), 153-165. Carbaniss S. E., Zhou Q., Maurice P. A., Chin Y. P. and Aiken G. R. (2000). A log-normal model for the molecular weight of aquatic fulvic acid. Environ. Sci. Technol., 34(6), 1103-1109. Chen J. P., Kim S.L. and Ting Y.P. (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. J. Membr. Sci., 219(1-2), 27-45. Cheryan M. (1998). Ultrafiltration and microfiltration handbook. Technomic Publishing Company, USA. Childress A. E. and Elimelech M. (2000). Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ. Sci. Technol., 34(17), 3710-3716. Cho J., Amy G. and Pellegrino J. (1998). Membrane filtration of natural organic matter:initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes. Water Res., 33(11), 2517-2526. Cho J., Amy G. and Pellegrino J. (1999). Membrane Filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes. Water Res., 33(11), 2517-2526. Choo K. H. and Lee C. H. (1996). Membrane fouling mechanisms in the membrane-coubled anaerobic bioreactor. Water Res., 30(8), 1771-1780. Chung T. S., Qlin J. J., Huan A. and Toh K. C. (2002). Visualization of the effect of die shear rate on the outer surface morphology of ultrafiltration membranes by AFM. J. Membr. Sci., 196(2), 251-266. Clever M., Jorrdt F., Knauf R., Räbiger N., Rüdebusch M. and Hilker-Scheibel R. (2000). Process water production from river water by ultrafiltration and reverse osmosis. Desalination, 131(1-3), 325-336. Cost A. R. and Maria N. D. P. (2005). Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. J. Membr. Sci., 255(1-2), 49-56. Davies G. Northeastern University Chemistry Department, Inorganic/ materials chemistry (online reference): http://www.chem.neu.edu/davies.html [Accessed 15 September 2003]. D’souza N. M. and Mawson A. J. (2005). Membrane ceaning in the dairy industry: a review. Taylor & Francis 45, 125-134. Erhan E., Keskinler B., Akay G. and Algur O.F. (2002). Removal of phenol from water by membrane-immobilized enzymes Part I. Dead-end filtration. J. Membr. Sci., 206(1-2), 361-373. Fan L., Harris J. L., Roddick F. A. and Booker N. (2001). Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res., 35(18), 4455-4463. Giorno L. and Drioli E. (2000). Biocatalytic membrane reactors: applications and perspectives. Tibtech., 18. Gwon E. M., Yu M. J., Oh H. K. and Ylee Y. H. (2003). Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Water Res., 37(12), 2989-2997. Haworth R.D. (1971). Soil Sci., 111, 71. Her N., Amy G. and Jarusutthirak. (2000). Seasonal variations of nanofiltration (NF) foulants:identification and control. Desalination, 132(1-3), 143-160. Hong S. and Elimelech M. (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci., 132(2), 159-181. Hwang K. J. and Lin T. T. (2002). Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration. J. Membr. Sci., 199(1-2), 41-52. Kaminski W. and Stawczyk J. (1997) An effect of vortex flow on fluxes in ultrafiltration plate-frame modules. J. Membr. Sci., 123(2), 157-164. Karnik B. S., Davies S. H.R., Chen K. C., Jaglowski D. R., Baumann M. J. and Masten S.J. (2005). Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Res., 39(4), 728-734. Katsoufidou K., Yianstsios S.G. and Karabelas A.J. (2005). A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing Experiments and modeling. J. Membr. Sci., 266(1-2), 40-50. Kilduff J. E., Mattaraj S. and Belfort G. (2004). Flux decline during nanofiltration of naturally-occurring dissolved organic matter: effects of osmotic pressure, membrane permeability, and cake formation. J. Membr. Sci., 239(1), 39-53. Kimura K., Hane Y., Watanabe Y., Amy G. and Ohkuma N. (2004). Irreversible membrane fouling during ultrafiltration of surface water. Water Res., 38(14-15), 3431-3441. Kulovaara M., Metsamuuronen S. and Nystrom M. (1999) Effects of aquatic humic substances on a hydrophobic ultrafiltration membrane. Chemosphere, 38(15), 3485-3496. Kweon J. H. and Lawler D. F. (2004). Fouling mechanisms in the integrated system with softening and ultrafiltration. Water Res., 38(19), 4164-4172. Laine J. M. (1998). Membrane technology and its application to drinking water production. Water Supply, 16(1/2), 318-322 Lamminen M. O., Walker H. W. and Weavers L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Membr. Sci., 237(1-2), 213-223. Lee H., Amy G., Cho J., Yoon Y., Moon S. H. and Kim S. I. (2001). Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Res., 35(4), 3301-3308. Lee N., Amy G., Croue J.P. and Buisson H. (2004). Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res., 38(20), 4511-4523. Lee N., Amy G., Croue J.P. and Buisson H. (2005). Morphological analyses of natural organic matter (NOM) fouling of low-pressure membranes (MF/UF). J. Membr. Sci., 261(1-2), 7-16. Lee S., Cho J. and Elimelech M. (2005). Combined influence of natural organic matter (NOM) and colloidal particles on nanofiltration membrane fouling. J. Membr. Sci., 262(1-2), 27-41. Li J., Hallbauer D.K. and Sanderson R.D. (2003). Direct monitoring of membrane fouling and cleaning during ultrafiltration using a non-invasive ultrasonic technique. J. Membr. Sci., 215(1-2), 33-52. Li J., Sanderson R. D. and Jacobs E. P. (2002). Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. J. Membr. Sci., 205(1-2), 247-257. Li Q. and Elimelech. (2004). Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ. Sci. Technol., 38(17), 4683-4693. Liikanen R., Yli-Kuivila K. and Laukkanen R. (2002). Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. J. Membr. Sci., 195(2), 265-276. Lin C. F., Huang Y. J. and Hao O. J. (1999). Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment. Water Res., 33(5), 1252-1264. Lin C. F., Liu S. H. and Hao O. J. (2001). Effect of functional groups of humic substances on UF performance. Water Res., 35(10), 2395-2402. Magara Y., Kunikane S. and Itoh M. (1998) Advanced membrane technology for application to water treatment. Water Sci. Technol., 37(10), 91-99. Malgorzata K. K., Katarzyna M. N. and Tomasz W. (1999) Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalination, 126(1-3), 179-185. Mattens A., Awart P. and Jacobs E.P. (1996). An enzymatic approach to the cleaning of ultrafiltration membrane fouled in abattoir effluent. J. Membr. Sci., 119(1), 9-16. Mozia S., Tomaszewska M. and Morawski A. W. (2005). Study on the effect of humic acid and phenol on adsorption-ultrafiltration process performance. Water Res., 39(2-3), 501-509. Mulder M. (1996) Basic principles of membrane technology. Kluwer Academic Publishers. Nakatsuka S. Nakate I. and Miyano T. (1996). Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1-3), 55–61. Newcombe G., Drikas M., Assmei S. and Beckett R. (1996) Influence of characterized nature organic material on activated carbon adsorption:I. characterisation of concentrated reservoir water. Water Res., 31(5), 965-972. Nilson J. A. and Digiano F. A. (1996). Influence od NOM composition on nanofiltration. J. Am. Water Works Ass., 88(5), 53-66. Ohya H., Kim J.J., Chinen A., Aihara M., Semenova S. I., Negishi Y., Mori O. and Yasuda M. (1998). Effects of pore size on separation mechanisms of microfiltration of oily water, use porous glass tubular membrane. J. Membr. Sci., 145(1), 1-14. Peuravuori J. Isolation, (1992). Fractionation and characterization of aquatic humic substances. Does a distinct humic molecule exist? Thesis, Department of Chemistry, University of Turku, Turku, Finland. Rao L., Choppin G. R. (1995) Thermodynamic study of the complexation of neptunium(V) with humic acids. Radiochim Acta., 69(87–95). Seidel A. and Elimelech M. (2002). Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control. J. Membr. Sci., 203(1-2), 245-255. Smith P. J., Vigneswaran S., Ngo H. H., Ben-Aim R. and Nguyen H. (2005). Design of a generic control system for optimising back flush durations in a submerged membrane hybrid reactor. J. Membr. Sci., 255 (1-2), 99-106. Song W., Ravindran V., Koel B. E. and Porbazari M. (2004). Nanofiltration of natural organic matter with H2O2/UV pretreatment : fouling mitigation and membrane surface characterization. J. Membr. Sci., 241(1), 143-160. Tay K. G. and Song L. (2005). A more effective method for fouling characterization in a full-scale reverse osmosis process. Desalination, 177(1-3), 95-107. Thurman E. M. (1985). Organic geochemistry of natural water. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht. Tr¨ag°ardh G. (1989). Membrane Cleaning. Desalination, 71:325–335. Shorrock C.J. and Bird M.R. (1998). Membrane cleaning: Chemically enhanced removal of deposits formed during yeast cell harvesting. Transactions of the Institution of Chemical Engineers, 76(C):30–38. Vrijenhoek E. M., Hong, S. and Elimelech M. (2001). Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci., 188(1), 115-128. Wu J., Taylor K. A., Bewtra J. K. and Biswas N. (1993). Optimization of the reaction conditions for enzymatic removal of phenol from wastewater in the presence of polyethylene glycol. Water Res., 27, 1701. Yoon S., H., Lee C. H., Kim K. J. and Fan A.G. (1997). Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production. Water Res., 32(7), 2180-2186. Yu M. J., Urase T., Oh H. K., Takizawa S. and Jo S. J. (2006). Assessment of performance and fouling in Pilot-Scale PAC-MF operation for surface water treatment. The 2nd Pan-Pacific international workshop on water management and technology. Yuan W. and Zydney A. L. (1999). Humic acid fouling during microfiltration. J. Membr. Sci., 157(1), 1-12. Yuan W. and Zydney A. L. (2000). Humic acid fouling during microfiltration. Environ. Sci. Technol., 157(1), 1-12. Yuan W. and Zydney A. L. (2000). Humic acid fouling during ultrafiltration. Environ. Sci. Technol., 34(23), 5043-5050. Zander A. K. and Curry N. K. (2001) Membrane and solution effects on solute rejection and productivity. Water Res., 35(18), 4426-4434. Zhang G. and Liu Z. (2003) Membrane fouling and cleaning in ultrafiltration of wastewater from banknote printing works. J. Membr. Sci., 211(1-2), 235-249. 劉世翔 (1997) 腐植酸官能基特性對PAC-UF程序的影響 國立台灣大學環境工程研究所碩士論文 蔡兆源 (2003) 質量平衡理論分析腐植酸對超濾薄膜之積垢現象 國立台灣大學環境工程研究所碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32616 | - |
dc.description.abstract | 本研究目的利用生物性的清洗試劑,藉以降低清洗積垢後所產生的廢液問題、減少對薄膜的傷害,透過不同透膜壓差(100和135 kPa)和過濾時間(24和12 hr),薄膜過濾腐植酸溶液後,利用酵素探討對薄膜上產生的不可逆積垢去除效率,並以阻力串聯模式分析阻力與去除效率之相關性。
從α- amylase和lipase的去除效率僅侷限於1~10%,主要因為薄膜積垢後,在薄膜表面上形成一致密的膠體層,導致孔隙率降低,使酵素易截留於此膠體層表面,因而去除效率不佳。相較於傳統的NaOH和citric acid有37%~63%和6 %~19 %的去除率,雖然酵素無較佳去除率,但NaOH和citric acid第一階段清洗完後,後續再以酵素清洗,均可提升去除效率,尤其是NaOH+α- amylase可至91%,意味著α- amylase和lipase可去除NaOH和citric acid無法去除的不可逆積垢;另一方面,FEG-SEM和AFM可觀察出NaOH和citric acid清洗後可使積垢表面膠體層孔隙率和粗糙度變大,增加α- amylase和lipase水解面積並提升其去除效率。 利用FTIR分析清洗前後,積垢物官能基的改變,反應出不可逆積垢與多醣類物質有直接相關性,經α- amylase清洗後,此多醣類物質的IR吸收強度明顯降低,推測不可逆積垢中有類似澱粉類物質(starch-like)潛在性。 | zh_TW |
dc.description.abstract | The utilization of enzymatic detergents for membrane fouling control presents several advantages such as minimum membrane damage, easier neutralization of cleaning effluents and their biodegradability was evaluated using different enzyme. The removal of irreversible fouling, due to ultrafiltration of humic acid.
T he fouled membrane surfaces appears smoother than corresponding clean membrane sufaces. NaOH and citric acid were much more efficient than enzyme solution. The combination of alkaline, acid and enzyme however, was more effective than NaOH and citric acid alone. This implies that enzyme can remove the component that cannot be removed or degraded by NaOH or citric acid. The highest cleaning efficiency was observed with the combination of NaOH and α-amylase. FEG-SEM and AFM analyses elucidate that the lower roughness of fouled membrane than clean membrane, which implied increasing cleaning efficiency of α-amylase and lipase. FTIR spectra analysis were applied to see difference between the original membrane and the fouling membrane.When irreversible fouling resistance achieve one critical value, α- amylase was more cleaning efficiency than NaOH. The removal organic matter of irreversible fouling were difference with NaOH and α- amylase. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:12:22Z (GMT). No. of bitstreams: 1 ntu-95-R93541112-1.pdf: 3257391 bytes, checksum: dacd1896ac3712ad07f9c7353148d69c (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 第一章 前言............................1
1.1 研究緣起...........................1 1.2 研究目的與內容.....................2 第二章 文獻回顧........................3 2.1 水中天然有機物.....................3 2.1.1 水中天然有機物基本性質與組成.....3 2.1.2 腐植質特性分析...................5 2.2 薄膜分離機制與應用.................9 2.2.1 分離機制.........................9 2.2.2 影響分離機制..................10 2.2.3 薄膜應用......................11 2.2.3.1 薄膜材質.......................12 2.2.3.2 薄膜形式.......................13 2.3 影響薄膜滲流率衰減之因子..........14 2.3.1 薄膜材質特性....................14 2.3.2 水質成分與操作參數..............17 2.4 薄膜積垢生成與清除................20 2.4.1 薄膜積垢生成....................20 2.4.2 薄膜積垢清除....................20 2.4.2.1 化學方式......................22 2.4.2.2 物理方式......................24 2.4.2.3 生物性方式....................25 2.4.2.4 改良操作方式..................25 2.5 酵素 ..............................27 2.5.1 酵素應用........................28 2.6 滲流率衰減之推估模式..............29 2.6.1 滲透壓模式......................31 2.6.2 質傳模式及邊界層模式............31 2.6.3 阻力串聯模式....................33 第三章 實驗材料與方法.................37 3.1 實驗內容與項目....................37 3.2 實驗設備..........................39 3.2.1 薄膜模組........................39 3.2.2 薄膜過濾與反洗設備..............40 3.3 薄膜過濾與清除積垢程序參數........42 3.3.1 薄膜參數........................42 3.3.2 進流液參數......................45 3.4 實驗步驟與方法....................48 3.4.1 配製腐植酸溶液..................48 3.4.2 清洗溶液之配置..................48 3.4.3 薄膜前處理......................48 3.4.4 薄膜過濾與積垢清除實驗..........49 3.4.5 積垢去除效率....................50 3.4.6 阻力模式分析....................51 3.5 分析儀器設備......................52 3.5.1 總有機碳(TOC)濃度...............52 3.5.3 場發射電子顯微鏡(FEG-SEM).......53 3.5.4 原子力顯微鏡(AFM)...............54 3.5.5 霍氏轉換紅外光譜儀(FTIR)........55 第四章 結果與討論....................56 4.1 滲流衰減與DOC去除率...............56 4.2 酵素清洗..........................58 4.2.1 酵素清洗機制與選擇..............58 4.2.2 酵素水解實驗....................61 4.2.3 時間的影響......................62 4.2.4 NaOH與citric acid之影響.........63 4.2.5 滲流回覆率......................66 4.3 FTIR分析腐植酸於薄膜上的積垢......69 4.4 操作參數對不可逆積垢去除之影響....72 4.4.1 透膜壓差影響....................72 4.4.2 過濾時間影響....................78 4.5 清洗前後薄膜表面概況..............81 4.5.1 FEG-SEM觀察.....................81 4.5.2 AFM觀察.........................86 4.6 NaOH與citrci acid在不同操作參數 對酵素清洗效率之影響..............88 4.7 不可逆積垢阻力分析................90 4.8 實廠評估..........................93 第五章 結論與建議......................95 5.1 結論..............................95 5.2 建議..............................97 參考文獻...............................98 附錄...................................106 | |
dc.language.iso | zh-TW | |
dc.title | 以酵素清洗超濾薄膜過濾腐植酸之不可逆積垢與分析 | zh_TW |
dc.title | Enzymatic cleaning irreversible fouling of ultrafiltration membranes fouled by humic acid | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郝晶瑾,李俊福,廖述良,吳家誠 | |
dc.subject.keyword | 不可逆積垢,酵素清洗,阻力串聯模式,超過濾薄膜, | zh_TW |
dc.subject.keyword | Irreversible fouling,Enzymatic cleaning,Resistance in series model,Ultrafiltration, | en |
dc.relation.page | 139 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。