Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32607
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor舒貽忠(Yi-Chung Shu)
dc.contributor.authorChun-Jen Hsuehen
dc.contributor.author薛淳仁zh_TW
dc.date.accessioned2021-06-13T04:12:14Z-
dc.date.available2013-08-09
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citationArlt, G. (1990). 'Twinning in ferroelectric and ferroelastic ceramics - stress relief.' Journal of Materials Science 25(6): 2655-2666.
Chen, L. Q. (2007). Landau free-energy coefficients. Physics of Ferroelectrics: A Modern Perspective. Berlin, Springer-Verlag Berlin. 105: 363-371.
Cross, E. (2004). 'Materials science - Lead-free at last.' Nature 432(7013): 24-25.
Damjanovic, D. (2005). 'Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics.' Journal of the American Ceramic Society 88(10): 2663-2676.
Devonshire, A. F. (1954). 'Theory of ferroelectrics.' Advances in Physics 3(10): 85-130.
Haun, M. J., E. Furman, et al. (1989). 'Thermodynamic theory of the lead zirconate - titanate solid-solution system, .4. Tilting of the oxygen octahedra.' Ferroelectrics 99: 55-62.
Haun, M. J., E. Furman, et al. (1989). 'Thermodynamic theory of the lead zirconate - titanate solid-solution system, .1. Phenomenlogy.' Ferroelectrics 99: 13-25.
Haun, M. J., E. Furman, et al. (1989). 'Thermodynamic theory of the lead zirconate - titanate solid-solution system, .5. Theoretical calculations.' Ferroelectrics 99: 63-86.
Haun, M. J., E. Furman, et al. (1987). 'Thermodynamics theory of PbTiO3.' Journal of Applied Physics 62(8): 3331-3338.
Haun, M. J., E. Furman, et al. (1989). 'Thermodynamic theory of the lead zirconate - titanate solid-solution system, .2. Tricritical behavior.' Ferroelectrics 99: 27-44.
Haun, M. J., Z. Q. Zhuang, et al. (1989). 'Thermodynamic theory of the lead zirconate - titanate solid-solution system, .3. Curie constant and 6th-order polarization interaction dielectric stiffness coefficient.' Ferroelectrics 99: 45-54.
Ishibashi, Y. and M. Iwata (1998). 'Morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics.' Japanese Journal of Applied Physics Part 2-Letters 37(8B): L985-L987.
Ishibashi, Y. and M. Iwata (1999). 'A theory of morphotropic phase boundary in solid-solution systems of perovskite-type oxide ferroelectrics.' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38(2A): 800-804.
Jaffe, B., W. R. Cook Jr, et al. (1971). Piezoelectric ceramics, London and New York: Academic Press.
Jin, Y. M., Y. U. Wang, et al. (2003). 'Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains.' Journal of Applied Physics 94(5): 3629-3640.
Kelly, J., M. Leonard, et al. (1997). 'Effect of composition on the electromechanical properties of (1-x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) ceramics.' Journal of the American Ceramic Society 80(4): 957-964.
Khachaturyan, A. G. (2010). 'Ferroelectric solid solutions with morphotropic boundary: Rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states.' Philosophical Magazine 90(1-4): 37-60.
Kuo, H. Y., Y. C. Shu, et al. (2010). 'Domain pattern and piezoelectric response across polymorphic phase transition in strained bismuth ferrite films.' Applied Physics Letters 97(24).
Lee, K. S., J. H. Choi, et al. (2001). 'Domain formation in epitaxial Pb(Zr,Ti)O-3 thin films.' Journal of Applied Physics 90(8): 4095-4102.
Rabe, K. A., M. Dawber, et al. (2007). Modern physics of ferroelectrics: Essential background. Physics of Ferroelectrics: A Modern Perspective. Berlin, Springer-Verlag Berlin. 105: 1-30.
Rossetti, G. A., A. G. Khachaturyan, et al. (2008). 'Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states.' Journal of Applied Physics 103(11).
Schonau, K. A., L. A. Schmitt, et al. (2007). 'Nanodomain structure of Pb Zr1-xTix O-3 at its morphotropic phase boundary: Investigations from local to average structure.' Physical Review B 75.
Shin, M. C., S. J. Chung, et al. (2004). 'Growth and observation of domain structure of lead magnesium niobate-lead titanate single crystals.' Journal of Crystal Growth 263(1-4): 412-420.
Shu, Y. C. and K. Bhattacharya (2001). 'Domain patterns and macroscopic behaviour of ferroelectric materials.' Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties 81(12): 2021-2054.
Wang, Y. U. (2006). 'Three intrinsic relationships of lattice parameters between intermediate monoclinic M-C and tetragonal phases in ferroelectric Pb (Mg1/3Nb2/3)(1-x)Ti-x O-3 and Pb (Zn1/3Nb2/3)(1-x)Ti-x O-3 near morphotropic phase boundaries.' Physical Review B 73(1).
Wang, Y. U. (2007). 'Diffraction theory of nanotwin superlattices with low symmetry phase: Application to rhombohedral nanotwins and monoclinic M-A and M-B phases.' Physical Review B 76(2).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32607-
dc.description.abstract鐵電材料為常見智能材料之一,鐵電材料之壓電性質被廣泛運用在感測器與致動器。而鐵電材料在接近MPB時出現的高壓電與介電性能更是近十年來熱門的研究題材。而過去的文獻中指出鐵電材料在接近MPB時是以多階層狀微結構存在著(Jin et al. 2003; Wang 2006; Schonau et al. 2007; Wang 2007)。因此有別與之前文獻以能量最小化求得單一鐵電疇接近MPB時的壓電與介電性能,本篇論文以總自由能最小化加上層狀結構之諧和條件求解層狀結構之等效壓電與介電性能,並與微觀力學所計算出之等效係數作比較。
本篇論文發現多階層狀等效壓電介電係數並不等於個別鐵電疇之體積分率相加,並且以總自由能最小化求得之等效係數與微觀力學所計算出之等效係數相比較,在外加場極小時兩者會求出相同的係數,亦即材料在基態之切線模數。而在接近MPB時,層狀結構在巨觀極化方向的縱向壓電性能與介電性能皆大幅上升,且高於單一鐵電疇在極化方向之壓電與介電性能。
zh_TW
dc.description.abstractFerroelectric materials have been widely recognized as one of important smart materials due to their excellent dielectric and piezoelectric behavior, and are therefore often used in actuator and sensor applications. It has been widely known that the abnormally large dielectric and piezoelectric behavior can be observed by forming MPB (morphotropic phase boundary) due to chemical alloying in certain conventional lead-based ferroelectrics. The explanations vary due to different observations of experiment. One of the important observations is the appearance of fine scales of laminar domain patterns as the composition approaches MPB (Wang et al. 2003; Wang 2006; Schonau et al. 2007; Wang 2007). As a result, the convention models based on single domain state for explaining the enhancement of piezoelectricity are questionable. Here, we propose a model based on energy minimizing laminated domain pattern for studying the effective dielectric and piezoelectric properties at composition near MPB.
It is found that the effective coefficients are not equivalent to the simple volume average of the distinct domain states. The results are consistent to those base on micromechanics calculations when the applied field is small. In addition, the effective dielectric and longitude piezoelectric coefficients at the poling direction are much larger than those calculated based on the single domain state.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:12:14Z (GMT). No. of bitstreams: 1
ntu-100-R98543040-1.pdf: 3551368 bytes, checksum: e2f0e358bf700dd00f8865e7985e0bfb (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents第1章 Introduction 1
1.1 背景與研究目的 1
1.2 多階層狀微結構 5
1.3 MPB(morphotropic phase boundary)介紹 8
1.4 本文架構 11
第2章 理論架構 12
2.1 總自由能 12
2.2 彈性吉布斯自由能 17
2.3 赫姆霍茲自由能 20
2.4 由總自由能求出不同晶體系統的材料參數 23
2.5 張量轉換 32
2.6 自由能與晶體座標系下材料參數之關係 34
第3章 文獻回顧 39
3.1 藍道多項式係數的選定 39
3.2 接近MPB時非極化方向之介電極化率大幅上升 46
3.3 剪切壓電性能的上升 50
3.4 自我適應相(Adaptive phase) 55
3.5 自我適應相晶格角度計算 60
3.6 總結 63
第4章 模型建立 64
4.1 第一階層狀結構(Rank-one laminate) 64
4.2 將非線性控制方程式線性化 68
4.3 第一階層狀結構之等效係數 72
4.4 Micromechanics 73
第5章 理論計算結果 75
5.1 參數設定 75
5.2 能量法線性化與非線性比較 77
5.3 能量法與Micromechanics比較 79
5.4 能量法求得等效係數與組成成分之關係(單一層狀結構) 83
5.5 等效係數與組成成分之關係(層狀結構之平均值) 89
第6章 結論與未來展望 91
6.1 結論 91
6.2 未來展望 92
參考資料 94
dc.language.isozh-TW
dc.subject多階層狀結構zh_TW
dc.subject鐵電材料zh_TW
dc.subject形變相界zh_TW
dc.subjectferroelectric materialen
dc.subjectlaminateen
dc.subjectmorphotropic phase boundaryen
dc.title鐵電材料在MPB的高介電/壓電性能探討zh_TW
dc.titleInvestigation of abnormally large dielectric/piezoelectric response of ferroelectrics near morphotropic phase boundaryen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊杉(Chuin-Shan David Chen),謝宗霖(Tzong-Lin Jay Shieh),郭心怡(Hsin-Yi Kuo)
dc.subject.keyword鐵電材料,多階層狀結構,形變相界,zh_TW
dc.subject.keywordferroelectric material,laminate,morphotropic phase boundary,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
3.47 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved