Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32552
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李苑玲
dc.contributor.authorWei-chuan Wangen
dc.contributor.author王偉全zh_TW
dc.date.accessioned2021-06-13T04:11:33Z-
dc.date.available2013-08-09
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citationAlhadainy HA (1994). Root perforations. A review of literature. Oral Surg Oral Med Oral Pathol 78(3):368-374.
Al-Nazhan S, Al-Judai A (2003). Evaluation of antifungal activity of mineral trioxide aggregate. Journal of Endodontics 29(12):826-827.
Andreasen JO, Farik B, Munksgaard EC (2002). Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol 18(3):134-137.
Anusavice KJ, Phillips RW (1996). Phillips' science of dental materials Philadelphia: W.B. Saunders.
Arens DE, Torabinejad M, Chivian N, Rubinstein R (1998). Practical lessons in endodontic surgery Chicago: Quintessence Pub. Co.
Asgary S, Parirokh M, Eghbal MJ, Brink F (2005). Chemical differences between white and gray mineral trioxide aggregate. Journal of Endodontics 31(2):101-103.
Baek SH, Plenk H, Jr., Kim S (2005). Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. Journal of Endodontics 31(6):444-449.
Balla R, LoMonaco CJ, Skribner J, Lin LM (1991). Histological study of furcation perforations treated with tricalcium phosphate, hydroxylapatite, amalgam, and Life. J Endod 17(5):234-238.
Beaudoin JJ, Ramachandran VS (1992). A new perspective on the hydration characteristics of cement phases. Cement and Concrete Research 22(4):689-694.
Ber BS, Hatton JF, Stewart GP (2007). Chemical Modification of ProRoot MTA to Improve Handling Characteristics and Decrease Setting Time. Journal of Endodontics 33(10):1231-1234.
Berger RL, Lawrence Jr FV, Young JF (1973). Studies on the hydration of tricalcium silicate pastes II. Strength development and fracture characteristics. Cement and Concrete Research 3(5):497-508.
Bogue RH, Lerch W (1934). Hydration of Portland Cement Compounds. Industrial & Engineering Chemistry 26(8):837-847.
Bonson S, Jeansonne BG, Lallier TE (2004). Root-end filling materials alter fibroblast differentiation. J Dent Res 83(5):408-413.
Bozeman TB, Lemon RR, Eleazer PD (2006). Elemental analysis of crystal precipitate from gray and white MTA. Journal of Endodontics 32(5):425-428.
Brinker CJ (1988). Hydrolysis and condensation of silicates: Effects on structure. Journal of Non-Crystalline Solids 100(1-3):31-50.
Brinker CJ, Scherer GW (1990). Sol-gel science : the physics and chemistry of sol-gel processing Boston: Academic Press.
Bryan EB, Woollard G, Mitchell WC (1999). Nonsurgical repair of furcal perforations: a literature review. Gen Dent 47(3):274-278; quiz 279-280.
Bye GC (1983). Portland cement : composition, production, and properties New York: Pergamon Press.
Camilleri J, Montesin FE, Papaioannou S, McDonald F, Pitt Ford TR (2004). Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod J 37(10):699-704.
Chang SW, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS (2010). Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(4):642-646.
Chong BS, Pitt Ford TR, Hudson MB (2003). A prospective clinical study of Mineral Trioxide Aggregate and IRM when used as root-end filling materials in endodontic surgery. Int Endod J 36(8):520-526.
Chong BS, Pitt Ford TR (2005). Root-end filling materials: rationale and tissue response. ENDODONTIC TOPICS 11(1):114-130.
Coltrain BK, Melpolder SM, Salva JM (1989). Proceedings of the IVth Int'l. Conference
on Ultrastructure Processing of Ceramics, Glasses, and Composites.
Cox CF, Subay RK, Ostro E, Suzuki S, Suzuki SH (1996). Tunnel defects in dentin bridges: Their formation following direct pulp capping. Oper Dent 21(1):4-11.
Cvek M (1992). Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol 8(2):45-55.
Dammaschke T, Gerth HUV, Züchner H, Schäfer E (2005). Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dental materials : official publication of the Academy of Dental Materials 21(8):731-738.
De Bruyne MAA, De Moor RJG (2004). The use of glass ionomer cements in both conventional and surgical endodontics. Int Endod J 37(2):91-104.
Dominguez Reyes A, Muñoz Muñoz L, Aznar Martín T (2005). Study of calcium hydroxide apexification in 26 young permanent incisors. Dental Traumatology 21(3):141-145.
Dorn SO, Gartner AH (1990). Retrograde filling materials: A retrospective success-failure study of amalgam, EBA, and IRM. Journal of Endodontics 16(8):391-393.
Duarte MA, De Oliveira Demarchi AC, Yamashita JC, Kuga MC, De Campos Fraga S (2005). Arsenic release provided by MTA and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99(5):648-650.
Ebisawa Y, Kokubo T, Ohura K, Yamamuro T (1990). Bioactivity of CaO•SiO<sub>2</sub>-based glasses:<i>in vitro</i> evaluation. Journal of Materials Science: Materials in Medicine 1(4):239-244.
El-Meligy OAS, Avery DR (2006a). Comparison of Apexification with Mineral Trioxide Aggregate and Calcium Hydroxide. Pediatric Dentistry 28(248-253.
El-Meligy OAS, Avery DR (2006b). Comparison of Mineral Trioxide Aggregate and Calcium Hydroxide as Pulpotomy Agents in Young Permanent Teeth (Apexogenesis). Pediatric Dentistry 28(399-404.
Fernandez-Yanez Sanchez A, Leco-Berrocal MI, Martinez-Gonzalez JM (2008). Metaanalysis of filler materials in periapical surgery. Med Oral Patol Oral Cir Bucal 13(3):E180-185.
Fischer EJ, Arens DE, Miller CH (1998). Bacterial leakage of mineral trioxide aggregate as compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a root-end filling material. Journal of Endodontics 24(3):176-179.
Ford T, Torabinejad M, Abedi H, Bakland L, Kariyawasam S (1996). Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 127(10):1491-1494.
Fowler CS, Swartz ML, Moore BK, Rhodes BF (1992). Influence of selected variables on adhesion testing. Dental Materials 8(4):265-269.
Fuss Z, Trope M (1996). Root perforations: classification and treatment choices based on prognostic factors. Endod Dent Traumatol 12(6):255-264.
Gancedo-Caravia L, Garcia-Barbero E (2006). Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. Journal of Endodontics 32(9):894-896.
Gauffinet S, Fiont E, Lesniewska E, Nonat A (1998). Direct observation of the growth of calcium silicate hydrate on alite and silica surfaces by atomic force microscopy. Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science 327(231-236.
Gutmann J, Harrison J (1991). Surgical Endodontics Boston, MA, USA: Blackwell Scientific Publications. .
Hargreaves KM, Cohen S, Berman LH (2011). Cohen's pathways of the pulp St. Louis, Mo.: Mosby Elsevier.
Harty FJ, Parkins BJ, Wengraf AM (1970). Success rate in root canal therapy. A retrospective study of conventional cases. Br Dent J 128(2):65-70.
Heitmann T, Unterbrink G (1995). Direct pulp capping with a dentinal adhesive resin system: a pilot study. Quintessence Int 26(11):765-770.
Hench LL, Wilson J (1984). Surface-active biomaterials. Science 226(4675):630-636.
Hench LL, West JK (1990). The sol-gel process. Chemical Reviews 90(1):33-72.
Hench LL (1991). Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society 74(7):1487-1510.
Himmel B, Gerber T, B&uuml;rger H (1987). X-ray diffraction investigations of silica gel structures. Journal of Non-Crystalline Solids 91(1):122-136.
Holt DM, Watts JD, Beeson TJ, Kirkpatrick TC, Rutledge RE (2007). The anti-microbial effect against enterococcus faecalis and the compressive strength of two types of mineral trioxide aggregate mixed with sterile water or 2% chlorhexidine liquid. Journal of Endodontics 33(7):844-847.
Hornyak GL (2009). Introduction to nanoscience & nanotechnology Boca Raton: CRC Press.
Hong ST, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W (2010). Effects of root canal irrigants on the push-out strength and hydration behavior of accelerated mineral trioxide aggregate in its early setting phase. Journal of Endodontics 36(12):1995-1999.
Huang TH, Yang CC, Ding SJ, Yan M, Chou MY, Kao CT (2005). Biocompatibility of human osteosarcoma cells to root end filling materials. J Biomed Mater Res B Appl Biomater 72(1):140-145.
Ingle JI, Bakland LK, Baumgartner JC (2008). Endodontics Hamilton, Ontario: BC Decker.
Islam I, Chng HK, Yap AU (2006). X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J 39(3):220-225.
Kayahan MB, Nekoofar MH, Kazandag M, Canpolat C, Malkondu O, Kaptan F et al. (2009). Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J 42(11):1004-1014.
Keiser K, Johnson CC, Tipton DA (2000). Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. Journal of Endodontics 26(5):288-291.
Kim S (2001). Color atlas of microsurgery in endodontics Philadelphia: Saunders.
Klein LC (1985). Sol-gel processing of silicates. Ann Rev Mater Sci 15(227-248.
Kogan P, He J, Glickman GN, Watanabe I (2006). The effects of various additives on setting properties of MTA. Journal of Endodontics 32(6):569-572.
Lee SJ, Monsef M, Torabinejad M (1993). Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. Journal of Endodontics 19(11):541-544.
Lee Y-L, Lee B-S, Lin F-H, Yun Lin A, Lan W-H, Lin C-P (2004). Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 25(5):787-793.
Lee YL, Lin FH, Wang WH, Ritchie HH, Lan WH, Lin CP (2007). Effects of EDTA on the hydration mechanism of mineral trioxide aggregate. J Dent Res 86(6):534-538.
Lindeboom JAH, Frenken JWFH, Kroon FHM, van den Akker HP (2005). A comparative prospective randomized clinical study of MTA and IRM as root-end filling materials in single-rooted teeth in endodontic surgery. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 100(4):495-500.
Maddalone M, Gagliani M (2003). Periapical endodontic surgery: a 3-year follow-up study. Int Endod J 36(3):193-198.
Markowitz K, Moynihan M, Liu M, Kim S (1992). Biologic properties of eugenol and zinc oxide-eugenol : A clinically oriented review. Oral Surgery, Oral Medicine, Oral Pathology 73(6):729-737.
Mart&iacute;nez A, Izquierdo-Barba I, Vallet-Reg&iacute; M (2000). Bioactivity of a CaO−SiO2 Binary Glasses System. Chemistry of Materials 12(10):3080-3088.
Mente J, Hage N, Pfefferle T, Koch MJ, Geletneky B, Dreyhaupt J et al. (2010). Treatment outcome of mineral trioxide aggregate: repair of root perforations. Journal of Endodontics 36(2):208-213.
Meryon SD, Jakeman KJ (1985). The effects in vitro of zinc released from dental restorative materials. Int Endod J 18(3):191-198.
Monteiro Bramante C, Demarchi AC, de Moraes IG, Bernadineli N, Garcia RB, Spangberg LS et al. (2008). Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(6):909-913.
Moretti AB, Sakai VT, Oliveira TM, Fornetti AP, Santos CF, Machado MA et al. (2008). The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J 41(7):547-555.
Moretton TR, Brown CE, Jr., Legan JJ, Kafrawy AH (2000). Tissue reactions after subcutaneous and intraosseous implantation of mineral trioxide aggregate and ethoxybenzoic acid cement. J Biomed Mater Res 52(3):528-533.
Namazikhah MS, Nekoofar MH, Sheykhrezae MS, Salariyeh S, Hayes SJ, Bryant ST et al. (2008). The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J 41(2):108-116.
Nikaido T, Takano Y, Sasafuchi Y, Burrow MF, Tagami J (1999). Bond strengths to endodontically-treated teeth. Am J Dent 12(4):177-180.
Osorio RM, Hefti A, Vertucci FJ, Shawley AL (1998). Cytotoxicity of endodontic materials. Journal of Endodontics 24(2):91-96.
Parirokh M, Torabinejad M (2010). Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part I: Chemical, Physical, and Antibacterial Properties. Journal of Endodontics 36(1):16-27.
Pereira MM, Hench LL (1996). Mechanisms of hydroxyapatite formation on porous gel-silica substrates. Journal of Sol-Gel Science and Technology 7(1):59-68.
Pope EJA, Mackenzie JD (1986). Sol-gel processing of silica: II. The role of the catalyst. Journal of Non-Crystalline Solids 87(1-2):185-198.
Pradhan DP, Chawla HS, Gauba K, Goyal A (2006). Comparative evaluation of endodontic management of teeth with unformed apices with mineral trioxide aggregate and calcium hydroxide. J Dent Child (Chic) 73(2):79-85.
Qudeimat MA, Barrieshi-Nusair KM, Owais AI (2007). Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. Eur Arch Paediatr Dent 8(2):99-104.
Reyes-Carmona JF, Felippe MS, Felippe WT (2009). Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. Journal of Endodontics 35(5):731-736.
Reyes-Carmona JF, Felippe MS, Felippe WT (2010). The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. Journal of Endodontics 36(2):286-291.
Roy DM, Oyefesobi SO (1977). Preparation of Very Reactive Ca2SiO4 Powder. Journal of the American Ceramic Society 60(3-4):178-180.
Rubinstein RA, Kim S (2002). Long-Term Follow-Up of Cases Considered Healed One Year After Apical Microsurgery. Journal of Endodontics 28(5):378-383.
Rud J, Munksgaard EC, Andreasen JO, Rud V, Asmussen E (1991). Retrograde root filling with composite and a dentin-bonding agent. 1. Dental Traumatology 7(3):118-125.
Rud J, Rud V, Munksgaard EC (1998). Retrograde sealing of accidental root perforations with dentin-bonded composite resin. Journal of Endodontics 24(10):671-677.
Saghiri MA, Shokouhinejad N, Lotfi M, Aminsobhani M, Saghiri AM (2010). Push-out bond strength of mineral trioxide aggregate in the presence of alkaline pH. Journal of Endodontics 36(11):1856-1859.
Saravanapavan P, Hench LL (2001). Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. Journal of Biomedical Materials Research 54(4):608-618
Saravanapavan P, Hench LL (2003). Mesoporous calcium silicate glasses. I. Synthesis. Journal of Non-Crystalline Solids 318(1-2):1-13.
Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL et al. (2004). Binary CaO-SiO(2) gel-glasses for biomedical applications. Biomed Mater Eng 14(4):467-486.
Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I (2005). Physicochemical basis of the biologic properties of mineral trioxide aggregate. Journal of Endodontics 31(2):97-100.
Sepet E, Pinar A, Ilhan B, Ulukapi I, Bilir A, Tuna S (2009). Cytotoxic effects of calcium hydroxide and mineral trioxide aggregate on 3T3 fibroblast cell line in vitro. Quintessence Int 40(8):e55-61.
Scherrer SS, Cesar PF, Swain MV (2010). Direct comparison of the bond strength results of the different test methods: a critical literature review. Dent Mater 26(2):e78-93.
Shackelford JF (1999). Bioceramics : applications of ceramic and glass materials in medicine Enfield, NH: Trans Tech Publications Ltd.
Shahi S, Rahimi S, Lotfi M, Yavari H, Gaderian A (2006). A comparative study of the biocompatibility of three root-end filling materials in rat connective tissue. Journal of Endodontics 32(8):776-780.
Shokouhinejad N, Nekoofar MH, Iravani A, Kharrazifard MJ, Dummer PM (2010). Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. Journal of Endodontics 36(5):871-874.
Sluyk SR, Moon PC, Hartwell GR (1998). Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material. Journal of Endodontics 24(11):768-771.
Smith JB, Loushine RJ, Weller RN, Rueggeberg FA, Whitford GM, Pashley DH et al. (2007). Metrologic evaluation of the surface of white MTA after the use of two endodontic irrigants. Journal of Endodontics 33(4):463-467.
Sousa CJ, Loyola AM, Versiani MA, Biffi JC, Oliveira RP, Pascon EA (2004). A comparative histological evaluation of the biocompatibility of materials used in apical surgery. Int Endod J 37(11):738-748.
Swift EJ, Trope M, Ritter AV (2003). Vital pulp therapy for the mature tooth – can it work? ENDODONTIC TOPICS 5(1):49-56.
Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K et al. (2006). Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J 39(5):415-422.
Taylor HFW (1997). Cement chemistry London: T. Telford.
Torabinejad M, Watson TF, Pitt Ford TR (1993). Sealing ability of a mineral trioxide aggregate when used as a root end filling material. Journal of Endodontics 19(12):591-595.
Torabinejad M, Hong CU, McDonald F, Pitt Ford TR (1995). Physical and chemical properties of a new root-end filling material. Journal of Endodontics 21(7):349-353.
Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD (1995). Cytotoxicity of four root end filling materials. Journal of Endodontics 21(10):489-492.
Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD (1995). Antibacterial effects of some root end filling materials. Journal of Endodontics 21(8):403-406.
Torabinejad M, Smith PW, Kettering JD, Pitt Ford TR (1995). Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root-end filling materials. Journal of Endodontics 21(6):295-299.
Torabinejad M, Hong CU, Pitt Ford TR, Kaiyawasam SP (1995). Tissue reaction to implanted super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. Journal of Endodontics 21(11):569-571.
Torabinejad M, Pitt Ford TR (1996). Root end filling materials: a review. Endod Dent Traumatol 12(4):161-178.
Torabinejad M, Ford TR, Abedi HR, Kariyawasam SP, Tang HM (1998). Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. Journal of Endodontics 24(7):468-471.
Torabinejad M, White D inventors (1998). US Patent number 5,769,638. Tooth filling material and use.
Torabinejad M, Corr R, Handysides R, Shabahang S (2009). Outcomes of nonsurgical retreatment and endodontic surgery: a systematic review. Journal of Endodontics 35(7):930-937.
Tziafas D, Smith AJ, Lesot H (2000). Designing new treatment strategies in vital pulp therapy. J Dent 28(2):77-92.
Vallet-Regi M, Salinas AJ, Arcos D (2006). From the bioactive glasses to the star gels. J Mater Sci Mater Med 17(11):1011-1017.
Vanderweele RA, Schwartz SA, Beeson TJ (2006). Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. Journal of Endodontics 32(5):421-424.
Walton RE, Torabinejad M (1996). Principles and practice of endodontics Philadelphia: W.B. Saunders.
Weiger R, Axmann-Krcmar D, Lost C (1998). Prognosis of conventional root canal treatment reconsidered. Endod Dent Traumatol 14(1):1-9.
Witherspoon DE (2008). Vital Pulp Therapy with New Materials: New Directions and Treatment Perspectives--Permanent Teeth. Journal of Endodontics 34(7, Supplement 1):S25-S28.
Wu MK, Kontakiotis EG, Wesselink PR (1998). Long-term seal provided by some root-end filling materials. Journal of Endodontics 24(8):557-560.
Yaltirik M, Ozbas H, Bilgic B, Issever H (2004). Reactions of connective tissue to mineral trioxide aggregate and amalgam. Journal of Endodontics 30(2):95-99.
Yasuda Y, Ogawa M, Arakawa T, Kadowaki T, Saito T (2008). The effect of mineral trioxide aggregate on the mineralization ability of rat dental pulp cells: an in vitro study. Journal of Endodontics 34(9):1057-1060.
Zhao W, Chang J (2004). Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Materials Letters 58(19):2350-2353.
Zhao W, Wang J, Zhai W, Wang Z, Chang J (2005). The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 26(31):6113-6121.
Zhao W, Chang J (2005). Preparation and characterization of novel tricalcium silicate bioceramics. J Biomed Mater Res A 73(1):86-89.
王盈錦 (2002). 生物醫學材料. 台北市, 合記圖書出版社
李苑玲 (2006). 鈣矽生醫陶瓷在牙髓病治療之研發與應用(博士論文). 台北市, 國立台灣大學醫學院臨床牙醫學研究所
黃兆龍 (1997). 混凝土性質與行為. 台北市, 詹氏書局
康舒涵 (2006). 以溶膠-凝膠技術研發孔洞材料應用於治療牙本質過敏症(碩士論文). 台北市, 國立台灣大學醫學院臨床牙醫學研究所
蔡郁馨 (2010). 鈣矽生醫陶瓷材料之開發及其合成機制之固態核磁共振研究(碩士論
文). 台北市, 國立台灣大學化學研究所
鄭雅文 (2010). 研發以明膠為模版之中孔洞鈣矽材料應用於治療牙本質過敏症(碩士
論文). 台北市, 國立台灣大學臨床牙醫學研究所
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32552-
dc.description.abstract根尖逆充填、根管穿孔修補以及活髓治療是臨床牙髓病治療常見的術式,而這些術式都需要使用適當的修補材料將缺損的齒質或修形的窩洞進行填補與修復。而目前臨床上所使用的材料很多,但或多或少都有缺點存在,並無法完全符合理想材料之標準。其中以鈣矽酸鹽為主成分的Mineral trioxide aggregate (MTA),因具有生物相容性、生物活性、封閉性質佳等優點,為目前最普遍使用的材料。但是MTA硬化時間過長、操作性質不佳與可能含有有毒物質卻是臨床應用的重大缺點。研究顯示MTA良好的生物相容性、生物活性以及封閉能力,可能與其主要成分鈣矽酸鹽的性質表現有關,然而根據本團隊先前的研究顯示,鈣矽酸鹽的水合速度較慢而有硬化時間較長的問題。因此本研究以三鈣矽酸鹽為出發點,應用溶膠-凝膠製程反應效率佳與產物純度高的特性,以改善材料硬化時間過長的問題,進而研發理想的牙髓病修補材料。本實驗分為兩個部分,首先利用溶膠-凝膠法備製三鈣矽酸鹽,並比較與市售MTA在物理化學與臨床性質的表現,以評估溶膠-凝膠製程之三鈣矽酸鹽在臨床應用的潛力。結果發現,以溶膠-凝膠製程三鈣矽酸鹽粉末(sol-gel C3S, sC3S)與高溫燒結製成的三鈣矽酸鹽粉末(C3S)相比較,兩者產物晶相的X光繞射峰出現的位置大致相同;而在進行水合反應後,除了與反應物相關的繞射峰強度有下降消失的情況外,同時也有代表反應產物的氫氧化鈣與碳酸鈣的繞射峰出現。此外隨著水合反應時間的增加,兩者的水合產物均從鬆散具有空隙的結構,逐漸轉變為緻密的結晶構造。電子顯微鏡觀察結果顯示,sC3S粉末顆粒較小且表面具有孔洞性;由於其高表面積特性,因此在硬化時間方面使得sC3S (12±0.8min)相較於C3S (177±10min)以及市售的白色MTA (WMTA:172±8min)和灰色MTA (GMTA: 114±5min)有大幅降低,在臨床應用上具有意義。而在牙本質之抗推離鍵結強度方面,sC3S (12.96±4.1 MPa)與C3S (11.11±3.9MPa)、WMTA (16.2±4.5 MPa) 、GMTA (15.78±3.8 MPa)無顯著差異。但是以此溶膠-凝膠製成的三鈣矽酸鹽仍有殘存氧化鈣過高與抗壓強度較差 (20.21±3.26 MPa)等問題,因此在第二部分,我們藉著改變製程中混合順序( r值)與催化劑濃度,來改善材料的物理化學與臨床性質。結果顯示,改變反應r值與催化劑濃度並不會改變產物粉末的孔洞性質,同時也不會影響到製程產物的晶相種類,但是會造成氧化鈣相關的繞射峰強度有明顯下降的效應。此外,隨著催化劑濃度降低,水合產物表面結晶形態會逐漸由條柱狀晶體發展成立體堆疊的片狀結晶;同時隨著水合反應時間增加,其顯微結構也有逐漸緻密的趨勢。在硬化時間方面,與第一部分的溶膠-凝膠製程產物相比,改變反應r值與催化劑濃度會使得產物的硬化時間增加 (28min~34min),但仍明顯短於市售兩種MTA (p<0.001);同時降低催化劑濃度可使產物具有較高的抗壓強度 (68.14±7.12MPa),與市售材料MTA相較,其差異具統計學上的意義 (p<0.001)。綜合本研究結果,溶膠-凝膠製程可製備具有表面孔洞性的三鈣矽酸鹽,其水合行為與產物與高溫燒結之三鈣矽酸鹽相似,但其硬化時間可短至12分鐘,於臨床應用具有意義。而降低溶膠-凝膠製程的起始r值與催化劑濃度,雖然對於牙本質推離鍵結強度沒有明顯的影響,但可促進材料的膠化行為,降低氧化鈣殘存量或結晶性以提升產物純度,同時也可提高水合產物的抗壓強度,在臨床牙髓病修補治療應用上深具潛力。zh_TW
dc.description.abstractAn ideal repair material plays an important role in the success of endodontic repair therapy including retrograde filling, perforation repair and vital pulp therapy. There are many repair materials have been used in endodontic applications, but none of these could fit the requirements of ideal material. Mineral trioxide aggregate (MTA) has been currently considered as a potential material used in endodontic repair treatments with promising results, which may caused by its major component - the tricalcium silicate (C3S). However, several disadvantages of MTA have been reported such as long setting time, difficulty in handling, and the high arsenic levels contained. Calcium silicate ceramics (CSCs) without toxic ingredients, developed by our research team, are surface bioactive ceramics presenting the similar behaviors in hydration, cell-material interaction and bioactivity to MTA. But the large amount of CaO remained in the high temperature sintering CSCs caused the low chemical reactivity and long setting time. In this study, we developed the porous C3S to enhance their setting reaction by applying sol-gel process, and further investigated their potential using in endodontic applications. This study was conducted to two sections. In the first section, we synthesized tricalcium silicate via sol-gel process (sC3S) following Tsai’s protocol, and evaluated its physical-chemical and clinical properties with commercial MTA and conventional-sintered C3S as compared groups. The results of X-ray diffraction (XRD) analysis showed the similar patterns in sC3S and C3S powders. After hydrated, peaks corresponding to reactants decreased, and peaks corresponding to hydration products of calcium hydroxide and calcium carbonate were recorded by XRD in both groups. Furthermore, the microstructures of C3S and sC3S hydrates were similar, which became more compact structure when time increased. Scanning electron microscope indicated the smaller particle size and porous texture of sC3S powder. In addition, sC3S presented the significant short setting time (12±0.8min) than those of C3S (177±10min), WMTA (172±8min) and GMTA (114±5min) gourps. In the push-out bonding test, there was no significant difference between sC3S (12.96±4.1 MPa), C3S (11.11±3.9MPa), WMTA (16.2±4.5 MPa) and GMTA (15.78±3.8 MPa). To consider the high level content of residual calcium oxide and unacceptable compressive strength (20.21±3.26 MPa) of previous synthesized sC3S, the protocols of sol-gel process were be modified by changing the mixing order (r ratio) and the concentration of catalyst to improve the properties of the material in the second section. The results showed that the changes in r ratio and the concentration of catalyst would not affect the porous texture and crystal phases of the produced sC3S powder, except the decline of the intensities of the peaks corresponded to calcium oxide. After hydration, the crystals over the outer surface changed their shapes form bar-like crystals to plate-like crystals with 3D structure when the catalyst decreased in concentration. In comparison to the previous synthesized sC3S in first section, the modification of sol-gel process by changing the r ratio and the concentration of catalyst would slightly prolong the setting time of products (28min~34min), but still significantly shorter than that of commercial MTA (p<0.001). Meanwhile, the decrease of the concentration of catalyst in sol-gel process would also improve the compressive strength of products (68.14±7.12MPa), which was much better than that of MTA (p<0.001). In conclusion, sol-gel process could produce porous sC3S with a clinical significant short setting time. Furthermore, the modification of r ratio and the concentration of catalyst in sol-gel process could improve the gelation and the purity of products, and enhance their compressive strength after hydration. Based on these findings, sol-gel synthesized tricalcium silicate is a potential ideal material in endodontic applications.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:11:33Z (GMT). No. of bitstreams: 1
ntu-100-R97422022-1.pdf: 5808206 bytes, checksum: f02962914f4b76764151f598e955d664 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要---------------------------------------------------i
英文摘要------------------------------------------------ iii
目錄----------------------------------------------------- v
圖次--------------------------------------------------- viii
表次------------------------------------------------------xi
縮寫表---------------------------------------------------xii
第一章 前言---------------------------------------------1
第二章 文獻回顧---------------------------------------- 3
2.1 牙髓病修補治療---------------------------------------- 3
2.1.1 根尖手術與根尖逆充填-------------------------------- 3
2.1.2 根管穿孔修補--------------------------------------- 3
2.1.3 活髓治療------------------------------------------- 4
2.1.4 理想之牙髓病修補材料------------------------------- 4
2.2 現有的牙髓病修補材料---------------------------------- 5
2.2.1牙科用汞齊------------------------------------------ 5
2.2.2 氧化鋅丁香油酚黏合劑------------------------------- 6
2.2.3 複合樹脂------------------------------------------- 6
2.2.4 玻璃離子體黏合劑----------------------------------- 7
2.2.5 氫氧化鈣------------------------------------------- 8
2.2.6 Minernal trioxde aggregate------------------------- 8
2.3 鈣矽生醫陶瓷在牙髓病修補治療上應用的潛力------------- 12
2.4 溶膠-凝膠法(sol-gel method) ------------------------- 13
2.4.1溶膠凝膠法反應機制--------------------------------- 14
2.4.2 影響溶膠-凝膠法反應之因素------------------------ 16
第三章 動機與目的------------------------------------- 19
第四章 材料與方法------------------------------------- 20
4.1 溶膠-凝膠三鈣矽酸鹽之物理與臨床性質研究-------------- 20
4.1.1 實驗分組------------------------------------------- 20
4.1.2 製備三鈣矽酸鹽粉末--------------------------------- 20
4.1.3 粉末性質之評估------------------------------------- 21
4.1.4 水合產物之物理化學性質評估------------------------- 22
4.1.5 牙本質推離鍵結測試--------------------------------- 24
4.2 改變溶膠-凝膠製程對三鈣矽酸鹽之性質影響研究---------- 27
4.2.1 實驗分組------------------------------------------- 27
4.2.2 調整製程順序與催化劑濃度備製溶膠-凝膠之三鈣矽酸鹽-- 28
4.2.3新製程粉末性質之評估-------------------------------- 28
4.2.4 水合產物之物理化學性質評估------------------------- 28
4.2.5 牙本質推離鍵結測試--------------------------------- 29
第五章 結果------------------------------------------- 30
5.1 溶膠-凝膠三鈣矽酸鹽之物理與臨床性質分析結果-----------30
5.1.1 材料粉末性質分析----------------------------------- 30
5.1.2 水合產物晶相分析----------------------------------- 31
5.1.3 水合產物顯微結構觀察------------------------------- 31
5.1.4 硬化時間測試--------------------------------------- 31
5.1.5 抗壓強度測試-------------------------------------- 32
5.1.6 牙本質推離鍵結測試--------------------------------- 32
5.2 製程改變對於溶膠-凝膠三鈣矽酸鹽之物理與臨床性質分析結果 ------------------------------------------------------ 32
5.2.1 材料膠化情形觀察----------------------------------- 32
5.2.2 材料粉末性質分析----------------------------------- 33
5.2.3 水合產物晶相分析----------------------------------- 33
5.2.4水合產物顯微結構觀察-------------------------------- 34
5.2.5 硬化時間測試--------------------------------------- 34
5.2.6 抗壓強度測試--------------------------------------- 34
5.2.7 牙本質推離鍵結測試--------------------------------- 35
第六章 討論------------------------------------------- 36
第七章 結論------------------------------------------- 47
參考文獻------------------------------------------------- 48
dc.language.isozh-TW
dc.subject推離測試法zh_TW
dc.subject三鈣矽酸鹽zh_TW
dc.subject溶膠-凝膠法zh_TW
dc.subject孔洞性zh_TW
dc.subject硬化時間zh_TW
dc.subject抗壓強度zh_TW
dc.subjecttricalcium silicateen
dc.subjectpush-out testen
dc.subjectcompressive strengthen
dc.subjectsetting timeen
dc.subjectporousen
dc.subjectsol-gel processen
dc.title研發新型溶膠-凝膠三鈣矽酸鹽於牙髓病治療之應用zh_TW
dc.titleDevelopment of new sol-gel tricalcium silicate cements in endodontic applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊彬,林?輝,黃何雄,陳振中
dc.subject.keyword三鈣矽酸鹽,溶膠-凝膠法,孔洞性,硬化時間,抗壓強度,推離測試法,zh_TW
dc.subject.keywordtricalcium silicate,sol-gel process,porous,setting time,compressive strength,push-out test,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved