請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32533
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姜祖恕(Tzuu-Shuh Chiang) | |
dc.contributor.author | Yi-Tai Chiu | en |
dc.contributor.author | 邱奕泰 | zh_TW |
dc.date.accessioned | 2021-06-13T04:11:21Z | - |
dc.date.available | 2006-08-26 | |
dc.date.copyright | 2006-07-29 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-26 | |
dc.identifier.citation | [1] Sato, K.I.(1999): “Lévy processes and infinitely divisible distributions.”, University Press, Cambridge.
[2] Applebaum, D.(2005): “Lévy processes and stochastic calculus.”, University Press, Cambridge. [3] Protter, P. (1990): “Stochastic Integration and Differential Equations.”, Springer. New York. [4] Cont, R. and Tankov, P.(2005): “Financial modelling with jump processes.”, Chapman & Hall/crc. [5] Chan, T. (1999): “Pricing Contingent Claims on Stocks Driven by Lévy Processes”, The Annals of Applied Probability 9, No. 2, 504-528. [6] Föllmer, H. and Schweizer, M. (1991): “Hedging of contingent claims under incomplete information.”, Applied Stochastic Analysis, pp. 389-414. [7] Gerber, H. U., and Shiu, E. S. W. (1994):“Option Pricing by Esscher-transform.”, Transactions of the Society of Actuaries, vol. 46, 99-191. [8] Shreve, S.E.(2004): “Stochastic calculus for finance :Continuous-time models.”, Springer Finance. New York. [9] Steele, J.M.(2001): “Stochastic calculus and financial applications.”, Springer. New York. [10] Hull, J.C.(2006): “Options,futures,and other derivatives.”, Pearson/Prentice Hall. Upper Saddle River, N.J. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32533 | - |
dc.description.abstract | 在這篇文章中,我們考慮如何定價一個或有請求權的問題;而其股價是由一個幾何布朗運動模型的更一般形式幾何Lévy過程所建構。這是個不完備的市場並且沒有唯一的等價平賭測度,主要是因為股價的隨機過程有隨機的跳點。我們研究三種不同的方法來訂定歐式選擇權的價值:Föllmer-Schweizer (1990)最小測度,Black-Scholes (1973)測度,Esscher轉換。它們利用等價平賭測度從不同觀念來貼近Black-Scholes模型之下的平賭測度。我們將比較在不同平賭測度下的歐式選擇權價值並且討論波動率對其價值的影響。 | zh_TW |
dc.description.abstract | In this paper, we consider the problem of pricing a contingent claim on a stock whose price process is modelled by a geometric Lévy process, a generalization of geometric Brownian motion model. The market is incomplete and there is no unique equivalent martingale measure due to the random jumps of the stock process. We study three approaches to pricing European option:the Föllmer-Schweizer[1990] minimal measure, the Black-Scholes [1973] measure and Esscher transform. They make use of equivalent martingale measures, in different senses closest to the
martingale measure of classical Black-Scholes equation. We will compare the European option prices under different martingale measures and discuss the influence of the volatility on the price. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:11:21Z (GMT). No. of bitstreams: 1 ntu-95-R93221034-1.pdf: 371123 bytes, checksum: 47e6f615822b95a2085e55324cdd358a (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 謝辭 Ⅳ
摘要 Ⅴ Abstract Ⅵ 1 Introduction 1 2 Lévy processes and general properties 3 2.1 Review of Lévy processes . . . . . . . . . . . . . 3 2.2 The jumps of Lévy processes . . . . . . . . . . . 4 3 Pricing by martingale measures 11 3.1 Model assumption . . . . . . . . . . . . . . . . . 11 3.2 Equivalent martingale measures . . . . . . . . . . 13 3.2.1 The Föllmer-Schweizer minimal measure . . . . . 16 3.2.2 The Black-Scholes measure . . . . . . . . . . . 17 3.2.3 The Esscher transform . . . . . . . .. . . . . . 18 3.3 Comparison of option prices under different martingale measures . . . . . . . . . . . . . . . . . . 19 4 Volatility and option prices 24 Bibliography 27 | |
dc.language.iso | en | |
dc.title | 在不同平賭測度下比較選擇權的價值 | zh_TW |
dc.title | Comparison of option prices under different
martingale measures | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許順吉(Shuenn-Jyi Sheu),韓傳祥(Chuan-Hsiang (Sean) | |
dc.subject.keyword | L&eacute,vy過程,平賭測度,最小測度,Black-Scholes測度,Esscher,波動率, | zh_TW |
dc.subject.keyword | L&eacute,vy process,martingale measure,minimal measure,Black-Scholes measure,Esscher,volatility, | en |
dc.relation.page | 27 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 362.42 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。