請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32499
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭瑞祥(Ruey-Shan Guo) | |
dc.contributor.author | Cheng-Bang Chen | en |
dc.contributor.author | 陳正邦 | zh_TW |
dc.date.accessioned | 2021-06-13T03:53:05Z | - |
dc.date.available | 2006-07-27 | |
dc.date.copyright | 2006-07-27 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-25 | |
dc.identifier.citation | [1]. Auslender, A. and P. Coutat, Sensitivity analysis for generalized linear-quadratic problems. Journal of Optimization Theory and Applications, 1996. 88(3): p. 541-559.
[2]. Bazaraa, M.S. and C.M. Shetty, Nonlinear programming : theory and algorithms. 1979, New York: Wiley. xiv, 560 p. [3]. Berkelaar, A.B., Sensitivity analysis in (degenerate) quadratic programming. 1996, Erasmus University Rotterdam, Econometric Institute. [4]. Berkelaar, A.B., K. Roos, and T. Terlaky, The optimal partition and optimal set approach to linear and quadratic programming. 1996, Erasmus University Rotterdam, Econometric Institute. [5]. Boot, J.C.G., Binding Constraint Procedures of Quadratic Programming. Econometrica: Journal of the Econometric Society, 1963. 31(3): p. 464-498. [6]. Boot, J.C.G., On Sensitivity Analysis in Convex Quadratic Programming Problems. Operations Research, 1963. 11(5): p. 771-786. [7]. Cheng, Y.C., DUAL GRADIENT METHOD FOR LINEARLY CONSTRAINED, STRONGLY CONVEX, SEPARABLE MATHEMATICAL PROGRAMMING PROBLEMS. Journal of Optimization Theory and Applications, 1987. 53(2): p. 237-246. [8]. Christie, R.M.E. and S.D. Wu, Semiconductor capacity planning: stochastic modelingand computational studies. IIE Transactions, 2002. 34(2): p. 131-143. [9]. Coleman, T.F. and Y. Li, A Global and Quadratically Convergent Method for Linear I Problems. SIAM Journal on Numerical Analysis, 1992. 29(4): p. 1166-1186. [10]. Dorn, W.S., Duality in quadratic programming. Quarterly of Applied Mathematics, 1960. 18: p. 155-162. [11]. Hillier, F.S. and G.J. Lieberman, Introduction to operations research. 7th ed ed. McGraw-Hill series in industrial engineering and. 2001, Boston: McGraw-Hill. xxix, 1214 p. [12]. Hung, Y.-F. and G.-J. Cheng, Hybrid capacity modeling for alternative machine types in linear programming production planning. IIE Transactions, 2002. 34(2): p. 157-165. [13]. Jacobs , F.R. and E. Bendoly Enterprise resource planning: Developments and directions for operations management research. European Journal of Operational Research, 2003. 146(2): p. 233-240(8). [14]. Jaddu, H. and M. Vlach, Successive approximation method for non-linear optimal control problems with application to a container crane problem. Optimal Control Applications and Methods, 2002. 23(5): p. 275-288. [15]. Karabuk, S. and S.D. Wu, Decentralizing semiconductor capacity planning via internal market coordination. IIE Transactions, 2002. 34(9): p. 743-759. [16]. Kodialam, M.S. and H. Luss, Algorithms for Separable Nonlinear Resource Allocation Problems. Operations Research, 1998. 46(2): p. 272-284. [17]. Li, H.-L. and C.-S. Yu, A global optimization method for nonconvex separable programming probl. 1999, Elsevier Science. p. 275-292. [18]. Lu, B.-L. and K. Ito, Converting general nonlinear programming problems into separable programming problems with feedforward neural networks. Neural Networks, 2003. 16(7): p. 1059-1074. [19]. Megiddo, N. and A. Tamir, Linear time algorithms for some separable quadratic programming problems. Operations Research Letters, 1993. 13(4): p. 203-211. [20]. Min, H. and E. Melachrinoudis, Dynamic location and entry mode selection of multinational manufacturing facilities under uncertainty: A chance-constrained goal programming approach. International Transactions in Operational Research, 1996. 3(1): p. 65-76. [21]. Ming-Jong, Y. and K.J. Min, Repair-unit location models for power failures. Engineering Management, IEEE Transactions on, 1998. 45(1): p. 57-65. [22]. Moeseke, P.V. and G. de Ghellinck, Decentralization in Separable Programming, in Econometrica: Journal of the Econometric Society. 1969. p. 73-78. [23]. Padillo, J.M., R. Ingalls , and S. Brown A Strategic Decision Support System for Supply Network Design and Management in the Semiconductor Industry. Computers Industry Engineering, 1995. 29: p. 443-447. [24]. Pardalos, P.M. and J.B. Rosen, Methods for Global Concave Minimization: A Bibliographic Survey. SIAM Review, 1986. 28(3): p. 367-379. [25]. Poljak, S., F. Rendl, and H. Wolkowicz, A recipe for semidefinite relaxation for (0,1)-quadratic programming. Journal of Global Optimization, 1995. 7(1): p. 51-73. [26]. Pyke, D.F. and M.A. Cohen, Performance characteristics of stochastic integrated production-distribution systems. European Journal of Operational Research, 1993. 68(1): p. 23-48. [27]. Rosen, J.B. and P.M. Pardalos, GLOBAL MINIMIZATION OF LARGE-SCALE CONSTRAINED CONCAVE QUADRATIC PROBLEMS BY SEPARABLE PROGRAMMING. Mathematical Programming, 1986. 34(2): p. 163-174. [28]. Rupp, T.M. and M. Ristic, Fine planning for supply chains in semiconductor manufacture. Journal of Materials Processing Technology, 2000. 107(1-3): p. 390-397. [29]. Rusin, M.H., A Revised Simplex Method for Quadratic Programming. SIAM Journal on Applied Mathematics, 1971. 20(2): p. 143-160. [30]. Sherali, H.D., Dorn's duality for quadratic programs revisited: The nonconvex case. European Journal of Operational Research, 1993. 65(3): p. 417-424. [31]. Simchi-Levi, D., P. Kaminsky, and E. Simchi-Levi, Designing and managing the supply chain : concepts. 2nd ed ed. 2003, Boston: McGraw-Hill/Irwin. xxvii, 354 p. [32]. Soland, R.M., ALGORITHM FOR SEPARABLE PIECEWISE CONVEX PROGRAMMING PROBLEMS. Naval Research Logistics Quarterly, 1973. 20(2): p. 325-340. [33]. Strang, G., Introduction to linear algebra. 3rd ed ed. 2003, Wellesly, MA: Wellesley-Cambridge. [34]. Thakur, L.S., SUCCESSIVE APPROXIMATION IN SEPARABLE PROGRAMMING: AN IMPROVED PROCEDURE FOR CONVEX SEPARABLE PROGRAMS. Naval Research Logistics Quarterly, 1986. 33(2): p. 325-358. [35]. Toktay, L.B. and R. Uzsoy, A capacity allocation problem with integer side constraints. European Journal of Operational Research, 1998. 109(1): p. 170-182. [36]. Wolfe , P., A duality theorem for non-linear programming. Quarterly of Applied Mathematics, 1961: p. 239-244. [37]. 鄭孟哲, 半導體供應鏈路徑配置之多目標最佳化模式. 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32499 | - |
dc.description.abstract | 隨著科技進步以及生產趨勢轉向著重少量客製化,半導體供應鏈變得非常動態且敏感,以往傳統的生產規劃方法,很難對此動態的模式加以有效地管理規劃。因而綜合考量包括服務層級、工作變異、績效表現及績效控制的網路半導體供應鏈模型被發展出來,可以有效的描述半導體供應鏈的運作,進而規劃出最佳的配置模式。但是由於半導體供應鏈的極度複雜性,求解此模式必須花費極長的時間,若在供應鏈上有擾動,重新求解將緩不濟急,且供應鏈對容忍環境變異的資訊並不易得知。因此本論文想深入探究此半導體供應鏈模型的敏感度分析,特別是限制式寬裕區間的議題。
由於模型的目標函數為不定型的二次函數,並不具有二次規劃中半正定型函數的許多良好性質,故先要對目標函數轉換後,才能進行敏感度分析。本研究利用相似性轉換的方法,解決變數間交乘項的問題;再利用分段規劃的方法,對二次係數為負的變數做片段切割逼近,最後用半正定型的片段二次函數逼近原目標函數。接著應用沃夫對偶定理的性質,進行此半導體供應鏈模型的敏感度分析。在考量各種不同擾動後,將可得到最佳配置模式下的各限制條件的寬裕區間,並從中分析得到半導體供應鏈的敏感因子。最後,可利用所得到的資訊,建立起此半導體供應鏈之監控機制。 | zh_TW |
dc.description.abstract | Semiconductor supply chain operations are very sophisticated and dynamic so that they are hard to be described precisely by traditional scheduling and planning methods. In order to elucidate the behavior of these operations of semiconductor supply chain network, a new behavior model, which takes quality of services, adaptability to process varieties, engineering changes, controllability and scalability of performance metrics into consideration, was developed. This then allows us to find the optimal supply chain configuration. However, by exploring the tolerance of environment disturbance, the impact of these disturbances on optimal supply chain model can be obtained without resolving the model due to the computational complexity of the model. Thus, this thesis intends to look into the issues of range of feasibility of this semiconductor supply chain model.
Unfortunately, the objective function of our supply chain model is indefinite quadratic even though we know that the positive semi-definite property is useful in the sensitivity analysis of quadratic programming. Therefore, we propose an approach that an indefinite function is initially transformed and approximated by separable programming and piecewise positive semi-definite functions such that the sensitivity analysis can be performed by applying the Wolfe-duality theory. Next, the feasibility ranges of all the constraints in the optimal configuration under different scenarios of perturbation can easily be explored. Moreover, the critical factors of the supply chain can be identified according to the sensitivity analysis results. Finally, with all these results, a possible monitoring mechanism can be developed for making quick adjustments if any inefficiency is detected. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:53:05Z (GMT). No. of bitstreams: 1 ntu-95-R93546023-1.pdf: 1304233 bytes, checksum: bb852151ac6a5806f5a40229c0a8c795 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 論文摘要 Ⅰ
Abstract Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 4 1.4 研究架構 5 1.5 章節概要 6 第二章 文獻探討 7 2.1 二次規劃模式 7 2.1.1 凸性、凹性及二次函數特性 7 2.1.2 二次規劃相關研究 10 2.2 二次規劃的敏感度分析 11 2.2.1 二次規劃對偶理論 11 2.2.2 敏感度分析 12 2.3 分段規劃模式 15 2.4 半導體供應鏈上下游整合 16 2.5 小結 19 第三章 建立二次規劃敏感度分析模式 20 3.1 供應鏈模型建立 20 3.1.1 模型假設 21 3.1.2 符號說明 21 3.1.3 半導體供應鏈數學模型 23 3.2 敏感度分析模式 25 3.2.1 二次規劃敏感度分析架構 25 3.2.2 符號說明 28 3.2.3 檢查模式 30 3.2.4 旋轉目標函數 30 3.2.5 分段規劃逼近法 34 3.2.6 調整可行解空間為非負空間 39 3.2.7 利用沃夫對偶理論求出問題之對偶模式 40 3.2.8 求解分段規劃法及對偶模式 45 3.2.9 利用互補基解定理求得合理解區間 47 第四章 模式驗證 50 4.1 數值範例 50 4.2 驗證及比較 59 4.2.1 演算法驗證 59 4.2.2 結果比較 63 第五章 分析結果 64 5.1 半導體供應鏈之敏感度分析 64 5.2 產能配置議題 71 5.3 優先次序配置議題 72 5.4 路徑配置議題 74 5.5 小結 76 第六章 結論 77 6.1 研究結論與貢獻 77 6.2 研究限制 78 6.3 未來研究方向 79 參考文獻 80 附錄 83 | |
dc.language.iso | zh-TW | |
dc.title | 半導體供應鏈網路配置模式之敏感度分析 | zh_TW |
dc.title | Sensitivity Analysis on Semiconductor Supply Chain Network Configuration | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蔣明晃 | |
dc.contributor.oralexamcommittee | 陳正剛,黃漢邦(Han-Pang Huang) | |
dc.subject.keyword | 半導體供應鏈,多目標規劃,分段規劃,敏感度分析,沃夫對偶定理,啟發解, | zh_TW |
dc.subject.keyword | Semiconductor supply chain,Goal programming model,sensitivity analysis,Separable programming,Wolfe duality theory,heuristic, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。