請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32489
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊鴻昌(Hong-Chang Yang) | |
dc.contributor.author | Ji-Cheng Chen | en |
dc.contributor.author | 陳智城 | zh_TW |
dc.date.accessioned | 2021-06-13T03:52:27Z | - |
dc.date.available | 2006-07-27 | |
dc.date.copyright | 2006-07-27 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-26 | |
dc.identifier.citation | [1] J. P. Wikswo, Jr., IEEE Trans. Appl. Supercond., 5 74-120, 1995
[2] ter Brake, H. J. M., W. A. M. Aarnink, P. J. van den Bosch, J. W. M. Hilgenkamp, J. Flokstra, and H. Rogalla, Supercond. Sci. Tech. 10 512, 1997 [3] Y. Zhang, N. Wolters, J. Schubert, D. Lomparski, M. Banzet, G. Panaitov, H. J. Krause, M. Mück and A. I. Braginski, IEEE Trans. Appl. Supercond. 13 389-392, 2003 [4] Hong-Chang Yang, Tsung-Yeh Wu, Herng-Er Horng, Chau-Chung Wu, S.Y. Yang, Shu-Hsien Liao, Chiu-Hsien Wu, J.T. Jeng, J.C. Chen, Kuen-Lin Chen, and M.J. Chen, Accepted by Superconductor Science and Technology (2006). [5] H. E. Horng, S. Y. Yang, Y. W. Huang, W. Q. Jiang, C.-Y Hong, H. C. Yang, IEEE Trans. Appl. Supercon. 15, 668, 2005 [6] W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, Jr., J. Phys. D: Appl. Phys. 30 293-323, 1997 [7] J. T. Jeng and H. E. Horng, H. C. Yang, Physica C 368 105-108, 2002 [8] T. S. Lee, Y. R. Chemla, E. Dantsker and J. Clarke, Rev. Sci. Instrum. 67 4208-4215, 1996 [9] Yoshimi Watanabe, S. H. Kang, J. W. Chan, and J. W. Morris, Jr., J. Appl. Phys. 89 1977-1982, 2001 [10] Saburo Tanaka, Nobuaki Tanaka, Miyuki Natsume, Masashi Uchida, Miyuki Oshita, Zarina Aspanut, Toshihiko Eki, and Sachiko Yoshida, Supercond. Sci. Tech. 16 1536-1539, 2003 [11] U. Kalberkamp, U. Matzander, K.-D. Husemann, G. Panaitow, E. Zimmermann, and Y. Zhang, Appl. Supercond. 5 205-211, 1998 [12] C. P. Foley, D. L. Tilbrook, K. E. Lesile, R. A. Binks, G. B. Donaldson, J. Du, S. K. Lam, P. W. Schmidt, and D. A. Clark, IEEE Trans. Appl. Supercond. 11 1375-1378, 2001 [13] Ya. S. Greenberg, Rev. Mod. Phys. 70 175, 1998 [14] K. Schlenga, R. McDemolt, John Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, Appl. Phys. Lett. 75 3695-3697, 1999 [15] D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and John Clarke, Rev. Mod. Phys. 71 631-686, 1999 [16] J. Clarke, in SQUID Sensors: Fundamentals, Fabrication and Application, NATO ASI series, p. 19, 1996 [17] Robert Eisberg, and Robert Resnick, Quantum Physics of atoms, molecules, solids nuclei, and particles, John Wiley & Sons, Inc., p. 491, 1985 [18] Yi Zhang, IEEE Trans. Appl. Supercond. 11 1038, 2001 [19] A. H. Silver, and J. E. Zimmerman, Phys. Rev. 157 317, 1967 [20] L. D. Jackel, and R. A. Buhrman, J. Low Temp. Phys. 19 201, 1975 [21] Tapani Ryhänen, Heikki Seppä, Risto Ilmoniemi, and Jukka Knuutila, J. Low Temp. Phys. 76 287, 1989 [22] P. K. Hansma, J. Appl. Phys. 44 4191, 1973 [23] J. Clarke, in SQUID Sensors: Fundamentals, Fabrication and Machines, edited by B. B. Schwartz and S. Foner, p. 67-124, 1977 [24] M. J. Zani, J. A. Luine, G. S. Lee, J. M. Murduck, R. Ha, M. J. Levis, R. A. Davidheiser, and L. R. Eaton, IEEE Trans. Magn., MAG-27 2557, 1991 [25] S. S. Tinchev, and J. H. Hinken, in Superconducting Devices and their applications, edited by H. Koch, and H. Lübbig, 64 102, 1992 [26] S. S. Tinchev, in Microwave Physics and Technique, p. 173, 1997 [27] Yi Zhang, H. -M. Mück, K. Herrmann, J. Schubert, W. Zander, A. I. Braginski, and C. Heiden, Appl. Phys. Lett. 60 645, 1992 [28] Yi Zhang, H. -M. Mück, K. Herrmann, J. Schubert, W. Zander, A. I. Braginski, and C. Heiden, IEEE Trans. Appl. Supercond. 3 2465, 1993 [29] J. Kurkijärvi, J. Appl. Phys. 44 3729, 1973 [30] D. F. He, X. H. Zeng, H. -J. Krause, H. Soltner, F. Rũders, and Yi Zhang, Appl. Phys. Lett. 72 969, 1998 [31] Yi Zhang, H. -M. Mück, M. Bode, K. Herrmann, J. Schubert, W. Zander, A. I. Braginski, and C. Heiden, Appl. Phys. Lett. 60 2303, 1992 [32] H. -M. Mück, and C. Heiden., Appl. Phys. A, 54 475, 1992 [33] Yi Zhang, H. -M. Mück, A. I. Braginski, and H. Töpfer, Supercond. Sci. Technol., 7 269, 1994 [34] Yi Zhang, M. Gottschlich, H. Soltner, E. Sodtke, J. Schubert, W. Zander, and A. I. Braginski, Appl. Phys. Lett. 67 3183, 1995 [35] M. Gottschlich, Y. Zhang, H. Soltner, W. Zander, J. Schubert, and A. I. Braginski, Porc. of EUCAS 2 1553, 1995 [36] Y. Zhang, H. Soltner, N. Wolters, W. Zander, J. Schubert, M. Banzet, and A. I. Braginski, IEEE Trans. Appl. Supercond. 7 2870, 1997 [37] Y. Zhang, N. Wolters, X. H. Zeng, J. Schubert, W. Zander, H. Soltner, H. R. Yi, M. Banzet, F. Rüder, and A. I. Braginski, Appl. Supercond. 6 385, 1998 [38] D. Drung, F. Ludwig, W. Müller, U. Steinhoff, L. Trahms, Y. Q. Shen, M. B. Jensen, P. Vase, T. Hoist, and T. Freltoft, Appl. Phys. Lett. 68 1421, 1996 [39] Yi Zhang, H. R. Yi, J. Schubert, W. Zander, M. Banzet, A. I. Braginski, Appl. Phys. Lett. 72 2029, 1998 [40] J. E. Zimmerman, Paul Thiene, and J. T. Harding, J. Appl. Phys. 41 1572, 1970 [41] Y. Zhang, H. R. Yi, J. Schubert, W. Zander, H. –J. Krause, H. Bousack, and A. I. Braginski, IEEE Trans. Appl. Supercond. 9 3396, 1999 [42] Y. Zhang, J. Schubert, N. Wolters, M. Banzet, W. Zander, and H.-J. Krause, Physica C 372-376 282-286, 2002 [43] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58 908, 1987 [44] K. L. Chen, H. C. Yang, and J. H. Chen, Physica C 372-376, 1078, 2002 [45] 陳坤麟, 國立台灣大學物理系碩士論文, 2001 [46] 吳秋賢, 國立台灣大學物理系博士論文, 2005 [47] http://www.crystec.de [48] http://www.shinkosha.com [49] M Golio, The RF and Microwave Handbook, p. 6-23, 2001 [50] X. H. Zeng, H. Soltner, D. Selbig, M. Bode, M. Bick, F. Rũders, J. Schubert, W. Zander, M. Banzet, Y. Zhang, H. Bousack, and A. I. Braginski, Meas. Sci. Technol. 9 1600, 1998 [51] Robin Cantor, Luke P. Lee, Mark Teepe, Vladimir Vinetskiy, and Joseph Longo, IEEE Trans. Appl. Supercond. 5 2927, 1995 [52] D. Koelle, A. H. Miklich, F. Ludwig, E. Dantsker, D. T. Nemeth and John Clarke, Appl. Phys. Lett. 63 2271, 1993 [53] S. Tanaka, H. Itozaki, H. Toyoda, N. Harada, A. Adachi, K. Okajima, H. Kado, and T. Nagaishi, Appl. Phys. Lett. 64 514, 1994 [54] F. Ludwig, D. Koelle, E. Dantsker, D. T. Nemeth, A. H. Miklich, John Clarke, and R. E. Thomson, Appl. Phys. Letts. 66 373, 1995 [55] R. Schamweber and M. Schilling, Appl. Phys. Lett. 69 1303, 1996 [56] Jerzy Krupka, Richard G. Geyer, Matthias Kuhn, and Johann Heyen Hinken, IEEE Trans. Microwave Theory Tech. 42 1886, 1994 [57] Mark B. Ketchen, W. J. Gallagher, A. W. Kleinsasser, S. Murphy and John R. Clem, in SQUID’85 Superconducting Quantum Interference Devices and their Applications, p. 865, 1985 [58] B.Chesca, J. Low Temp. Phys. 110 963, 1998 [59] X. H. Zeng, Y. Zhang. B. Cheaca, K. Barthel, Ya. S. Greenberg, and A. I. Braginski, J. Appl. Phys. 88 6781, 2000 [60] Ji-Cheng Chen, Chiu-Hsien Wu, Kuen-Lin Chen, Jen-Tzong Jeng, Herng-Er Horng and Hong-Chang Yang, J. of Korean Physical Society 48 1100, 2006 [61] S. Tanaka, H. Itozaki, H. Toyoda, N. Harada, A. Adachi, K. Okajima, H. Kado, and T. Nagaishi, Appl. Phys. Lett. 64 514, 1994 [62] A. N. Matlashov, V. P. Koshelets, P. V. Kalashnikov, Yu. E. Zhuravlev, V. Yu. Slobodchikov, S. A. Kovtonyuk and L. V. Filippenko, IEEE Trans. Magn. 27 2963, 1991 [63] Y. Zhang, U. Krüger, R. Kutzner, R. Wõrdenweber, J. Schubert, W. Zander, E. Sodtke, A. I. Braginski, and M. Strupp., Appl. Phys. Lett. 65 3380, 1994 [64] Y. Zhang, W. Zander, J. Schubert, F. Rüder, H. Soltner, M. Banzet, N. Wolters, X. H. Zeng, and A. I. Braginski, Appl. Phys. Lett. 71 704, 1997 [65] S. K. Lee, W. R. Myers, H. L. Grossman, H. M. Cho, Y. R. Chemla, and J. Clarke 2002 Appl. Phys. Lett. 81 3094-3096, 2002 [66] M. Schmidt, H. J. Krause, M. Banzet, D. Lomparski, J. Schubert, W. Zander, Y. Zhang, R. Akram, and M. Fardmanesh, Supercond. Sci. Tech. 19 S261-S265, 2006 [67] N. Kasai, N. Ishikawa, H. Yamakawa, K. Chinone, S. Nakayama, and A. Odawara, IEEE Trans. Appl. Supercond. 7 2315, 1997 [68] J. T. Jeng, H. E. Horng, and H. C. Yang, Physica C 368 105-108, 2002 [69] Y. Zhang, H. Soltner, H.-J. Krause, E. Sodtke, W. Zander, J. Schubert, M. Grüneklee, D. Lomparski, M. Banzet, H. Bousack, and A. I. Braginski, IEEE Trans. Appl. Supercond. 7 2866, 1997 [70] J. E. Zimmerman, P. Thiene, and J. T. Harding, J. Appl. Phys. 41 1572, 1970 [71] C. M. Falco and W. H. Parker, J. Appl. Phys. 46 3238, 1975 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32489 | - |
dc.description.abstract | The superconducting quantum interference device (SQUID) is one of the important applications of high-TC superconductors. Since the high sensitivity to magnetic fields, the SQUID magnetometers have been used in many researches on weak field detections. They have been widely used in non-destructive evaluation (NDE), scanning SQUID microscope (SSM), magnetocardiology (MCG), magnetoencephalography (MEG), and low field nuclear magnetic resonance (NMR). Most of the high-TC SQUID magnetometers in use are dc SQUIDs. The dc SQUID has two Josephson junctions in a superconducting ring. In an rf SQUID, there is only one Josephson junction. The signal of the rf SQUID is read out by a copper loop inductively coupled to the SQUID through a LC resonant circuit. A great improvement of high-TC rf SQUIDs was done by Zhang et al. in Jülich Research Center, Germany. They have developed many kinds of high-TC rf SQUIDs. The flux concentrator further improves the effective area of the magnetometer. The noise level can be as lower as that of high-TC dc SQUIDs. Recently, they used a substrate resonator which cause the SQUID more stable and to be set up more simply.
In this work, I try to study the noise characteristics of the high-TC rf SQUID magnetometers. A new designed rf SQUID magnetometer is developed. The principle of rf SQUID and the development of high-TC rf SQUID magnetometer are introduced in chapter 1 The preparations of the flux concentrator and the rf SQUID are in chapter 2. Measuring procedures including the resonant frequency, the effective area and the noise spectral density are also in this chapter. Chapter 3 shows variations of the effective area and resonant frequency due to changing the size of the superconducting flux concentrator. The flux noise of the high-TC rf SQUID magnetometer is resonant-frequency-dependent. The experiment results are fitted by Chesca’s formula. In chapter 4, we developed a new design which is called an integrated rf SQUID magnetometer. The rf SQUID is fabricated directly onto the SrTiO3 substrate resonator. The same concept is used to design a integrated 1st order planar gradiometer in chapter 5. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:52:27Z (GMT). No. of bitstreams: 1 ntu-95-D90222007-1.pdf: 11760361 bytes, checksum: 70da3ae66bca61980081702a19b18a3a (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 principle of rf SQUID 1.1.1 Flux relation of the SQUID loop 1.1.2 SQUID readout and LC resonant circuit 1.1.3 Flux-locked-loop and SQUID output 1.2 development of HTS rf SQUID magnetometer 1.2.1 First generation 1.2.2 Second generation 1.2.3 Third generation 1.2.4 SQUID with substrate resonator Chapter 2 Experiment 13 2.1 SQUID fabrication 1.1.1 Thin film deposition 1.1.2 Photolithography and etching 1.1.3 Bicrystalline substrate 2.2. Resonant frequency 2.2.1 Resonator 2.2.2 Network analyzer 2.3 Read-out of the rf SQUID 2.3.1 Set-up 2.3.2 SQUID electronics 2.3.3 Test mode output and V-Φ curve 2.3.4 Adjustment of the working point 2.4 Effective area 2.4.1 Field noise and effective area 2.4.2 Helmholtz coil 2.4.3 Estimation of effective area 2.5 Noise spectral density 2.5.1 Spectrum analyzer 2.5.2 Magnetic shielding Chapter 3 rf SQUID magnetometer coupled to substrate resonator 32 3.1 Basic idea 3.1.1 Substrate resonator 3.1.2 Washer-type flux concentrator 3.1.3 Flux noise and resonant frequency 3.1.4 Optimization of flux concentrator 3.2 Flux concentrator and effective area 3.2.1 rf SQUID magnetometer coupled to tank circuit 3.2.2 rf SQUID magnetometer coupled to substrate resonator 3.3 Resonant frequency of the substrate resonator 3.4 Noise performance Chapter 4 rf SQUID magnetometer integrated on substrate resonator 51 4.1 Basic idea 4.2 Results 4.2.1 Resonant frequency 4.2.2 Voltage-flux curve and effective area 4.2.3 Noise spectral density 4.3 Discussion Chapter 5 rf SQUID gradiometer integrated on substrate resonator 60 5.1 Concept of planar gradiometer 5.1.1 Introduction to gradiometer 5.1.2 rf double-hole gradiometer 5.2 Uniform field gradient 5.3 The first design of integrated gradiometer 5.3.1 Layout of the gradiometer 5.3.2 Results and discussion 5.4 The second design of integrated gradiometer 5.4.1 Layout of the gradiometer 5.4.2 Results and discussion Chapter 6 Conclusion 77 Reference 79 | |
dc.language.iso | en | |
dc.title | 積體式高溫超導交流量子干涉元件製作及其特性研究 | zh_TW |
dc.title | Fabrication and Characterization of Integrated High-TC Radio-Frequency Superconducting Quantum Interference Device | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 郭義雄,洪姮娥,王立民,莊振益,鄭振宗,楊謝樂 | |
dc.subject.keyword | 超導,量子干涉元件,磁量計, | zh_TW |
dc.subject.keyword | superconductor,rf SQUID,magnetometer, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 11.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。