Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32489
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鴻昌(Hong-Chang Yang)
dc.contributor.authorJi-Cheng Chenen
dc.contributor.author陳智城zh_TW
dc.date.accessioned2021-06-13T03:52:27Z-
dc.date.available2006-07-27
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-26
dc.identifier.citation[1] J. P. Wikswo, Jr., IEEE Trans. Appl. Supercond., 5 74-120, 1995
[2] ter Brake, H. J. M., W. A. M. Aarnink, P. J. van den Bosch, J. W. M. Hilgenkamp, J. Flokstra, and H. Rogalla, Supercond. Sci. Tech. 10 512, 1997
[3] Y. Zhang, N. Wolters, J. Schubert, D. Lomparski, M. Banzet, G. Panaitov, H. J. Krause, M. Mück and A. I. Braginski, IEEE Trans. Appl. Supercond. 13 389-392, 2003
[4] Hong-Chang Yang, Tsung-Yeh Wu, Herng-Er Horng, Chau-Chung Wu, S.Y. Yang, Shu-Hsien Liao, Chiu-Hsien Wu, J.T. Jeng, J.C. Chen, Kuen-Lin Chen, and M.J. Chen, Accepted by Superconductor Science and Technology (2006).
[5] H. E. Horng, S. Y. Yang, Y. W. Huang, W. Q. Jiang, C.-Y Hong, H. C. Yang, IEEE Trans. Appl. Supercon. 15, 668, 2005
[6] W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, Jr., J. Phys. D: Appl. Phys. 30 293-323, 1997
[7] J. T. Jeng and H. E. Horng, H. C. Yang, Physica C 368 105-108, 2002
[8] T. S. Lee, Y. R. Chemla, E. Dantsker and J. Clarke, Rev. Sci. Instrum. 67 4208-4215, 1996
[9] Yoshimi Watanabe, S. H. Kang, J. W. Chan, and J. W. Morris, Jr., J. Appl. Phys. 89 1977-1982, 2001
[10] Saburo Tanaka, Nobuaki Tanaka, Miyuki Natsume, Masashi Uchida, Miyuki Oshita, Zarina Aspanut, Toshihiko Eki, and Sachiko Yoshida, Supercond. Sci. Tech. 16 1536-1539, 2003
[11] U. Kalberkamp, U. Matzander, K.-D. Husemann, G. Panaitow, E. Zimmermann, and Y. Zhang, Appl. Supercond. 5 205-211, 1998
[12] C. P. Foley, D. L. Tilbrook, K. E. Lesile, R. A. Binks, G. B. Donaldson, J. Du, S. K. Lam, P. W. Schmidt, and D. A. Clark, IEEE Trans. Appl. Supercond. 11 1375-1378, 2001
[13] Ya. S. Greenberg, Rev. Mod. Phys. 70 175, 1998
[14] K. Schlenga, R. McDemolt, John Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, Appl. Phys. Lett. 75 3695-3697, 1999
[15] D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and John Clarke, Rev. Mod. Phys. 71 631-686, 1999
[16] J. Clarke, in SQUID Sensors: Fundamentals, Fabrication and Application, NATO ASI series, p. 19, 1996
[17] Robert Eisberg, and Robert Resnick, Quantum Physics of atoms, molecules, solids nuclei, and particles, John Wiley & Sons, Inc., p. 491, 1985
[18] Yi Zhang, IEEE Trans. Appl. Supercond. 11 1038, 2001
[19] A. H. Silver, and J. E. Zimmerman, Phys. Rev. 157 317, 1967
[20] L. D. Jackel, and R. A. Buhrman, J. Low Temp. Phys. 19 201, 1975
[21] Tapani Ryhänen, Heikki Seppä, Risto Ilmoniemi, and Jukka Knuutila, J. Low Temp. Phys. 76 287, 1989
[22] P. K. Hansma, J. Appl. Phys. 44 4191, 1973
[23] J. Clarke, in SQUID Sensors: Fundamentals, Fabrication and Machines, edited by B. B. Schwartz and S. Foner, p. 67-124, 1977
[24] M. J. Zani, J. A. Luine, G. S. Lee, J. M. Murduck, R. Ha, M. J. Levis, R. A. Davidheiser, and L. R. Eaton, IEEE Trans. Magn., MAG-27 2557, 1991
[25] S. S. Tinchev, and J. H. Hinken, in Superconducting Devices and their applications, edited by H. Koch, and H. Lübbig, 64 102, 1992
[26] S. S. Tinchev, in Microwave Physics and Technique, p. 173, 1997
[27] Yi Zhang, H. -M. Mück, K. Herrmann, J. Schubert, W. Zander, A. I. Braginski, and C. Heiden, Appl. Phys. Lett. 60 645, 1992
[28] Yi Zhang, H. -M. Mück, K. Herrmann, J. Schubert, W. Zander, A. I. Braginski, and C. Heiden, IEEE Trans. Appl. Supercond. 3 2465, 1993
[29] J. Kurkijärvi, J. Appl. Phys. 44 3729, 1973
[30] D. F. He, X. H. Zeng, H. -J. Krause, H. Soltner, F. Rũders, and Yi Zhang, Appl. Phys. Lett. 72 969, 1998
[31] Yi Zhang, H. -M. Mück, M. Bode, K. Herrmann, J. Schubert, W. Zander, A. I. Braginski, and C. Heiden, Appl. Phys. Lett. 60 2303, 1992
[32] H. -M. Mück, and C. Heiden., Appl. Phys. A, 54 475, 1992
[33] Yi Zhang, H. -M. Mück, A. I. Braginski, and H. Töpfer, Supercond. Sci. Technol., 7 269, 1994
[34] Yi Zhang, M. Gottschlich, H. Soltner, E. Sodtke, J. Schubert, W. Zander, and A. I. Braginski, Appl. Phys. Lett. 67 3183, 1995
[35] M. Gottschlich, Y. Zhang, H. Soltner, W. Zander, J. Schubert, and A. I. Braginski, Porc. of EUCAS 2 1553, 1995
[36] Y. Zhang, H. Soltner, N. Wolters, W. Zander, J. Schubert, M. Banzet, and A. I. Braginski, IEEE Trans. Appl. Supercond. 7 2870, 1997
[37] Y. Zhang, N. Wolters, X. H. Zeng, J. Schubert, W. Zander, H. Soltner, H. R. Yi, M. Banzet, F. Rüder, and A. I. Braginski, Appl. Supercond. 6 385, 1998
[38] D. Drung, F. Ludwig, W. Müller, U. Steinhoff, L. Trahms, Y. Q. Shen, M. B. Jensen, P. Vase, T. Hoist, and T. Freltoft, Appl. Phys. Lett. 68 1421, 1996
[39] Yi Zhang, H. R. Yi, J. Schubert, W. Zander, M. Banzet, A. I. Braginski, Appl. Phys. Lett. 72 2029, 1998
[40] J. E. Zimmerman, Paul Thiene, and J. T. Harding, J. Appl. Phys. 41 1572, 1970
[41] Y. Zhang, H. R. Yi, J. Schubert, W. Zander, H. –J. Krause, H. Bousack, and A. I. Braginski, IEEE Trans. Appl. Supercond. 9 3396, 1999
[42] Y. Zhang, J. Schubert, N. Wolters, M. Banzet, W. Zander, and H.-J. Krause, Physica C 372-376 282-286, 2002
[43] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58 908, 1987
[44] K. L. Chen, H. C. Yang, and J. H. Chen, Physica C 372-376, 1078, 2002
[45] 陳坤麟, 國立台灣大學物理系碩士論文, 2001
[46] 吳秋賢, 國立台灣大學物理系博士論文, 2005
[47] http://www.crystec.de
[48] http://www.shinkosha.com
[49] M Golio, The RF and Microwave Handbook, p. 6-23, 2001
[50] X. H. Zeng, H. Soltner, D. Selbig, M. Bode, M. Bick, F. Rũders, J. Schubert, W. Zander, M. Banzet, Y. Zhang, H. Bousack, and A. I. Braginski, Meas. Sci. Technol. 9 1600, 1998
[51] Robin Cantor, Luke P. Lee, Mark Teepe, Vladimir Vinetskiy, and Joseph Longo, IEEE Trans. Appl. Supercond. 5 2927, 1995
[52] D. Koelle, A. H. Miklich, F. Ludwig, E. Dantsker, D. T. Nemeth and John Clarke, Appl. Phys. Lett. 63 2271, 1993
[53] S. Tanaka, H. Itozaki, H. Toyoda, N. Harada, A. Adachi, K. Okajima, H. Kado, and T. Nagaishi, Appl. Phys. Lett. 64 514, 1994
[54] F. Ludwig, D. Koelle, E. Dantsker, D. T. Nemeth, A. H. Miklich, John Clarke, and R. E. Thomson, Appl. Phys. Letts. 66 373, 1995
[55] R. Schamweber and M. Schilling, Appl. Phys. Lett. 69 1303, 1996
[56] Jerzy Krupka, Richard G. Geyer, Matthias Kuhn, and Johann Heyen Hinken, IEEE Trans. Microwave Theory Tech. 42 1886, 1994
[57] Mark B. Ketchen, W. J. Gallagher, A. W. Kleinsasser, S. Murphy and John R. Clem, in SQUID’85 Superconducting Quantum Interference Devices and their Applications, p. 865, 1985
[58] B.Chesca, J. Low Temp. Phys. 110 963, 1998
[59] X. H. Zeng, Y. Zhang. B. Cheaca, K. Barthel, Ya. S. Greenberg, and A. I. Braginski, J. Appl. Phys. 88 6781, 2000
[60] Ji-Cheng Chen, Chiu-Hsien Wu, Kuen-Lin Chen, Jen-Tzong Jeng, Herng-Er Horng and Hong-Chang Yang, J. of Korean Physical Society 48 1100, 2006
[61] S. Tanaka, H. Itozaki, H. Toyoda, N. Harada, A. Adachi, K. Okajima, H. Kado, and T. Nagaishi, Appl. Phys. Lett. 64 514, 1994
[62] A. N. Matlashov, V. P. Koshelets, P. V. Kalashnikov, Yu. E. Zhuravlev, V. Yu. Slobodchikov, S. A. Kovtonyuk and L. V. Filippenko, IEEE Trans. Magn. 27 2963, 1991
[63] Y. Zhang, U. Krüger, R. Kutzner, R. Wõrdenweber, J. Schubert, W. Zander, E. Sodtke, A. I. Braginski, and M. Strupp., Appl. Phys. Lett. 65 3380, 1994
[64] Y. Zhang, W. Zander, J. Schubert, F. Rüder, H. Soltner, M. Banzet, N. Wolters, X. H. Zeng, and A. I. Braginski, Appl. Phys. Lett. 71 704, 1997
[65] S. K. Lee, W. R. Myers, H. L. Grossman, H. M. Cho, Y. R. Chemla, and J. Clarke 2002 Appl. Phys. Lett. 81 3094-3096, 2002
[66] M. Schmidt, H. J. Krause, M. Banzet, D. Lomparski, J. Schubert, W. Zander, Y. Zhang, R. Akram, and M. Fardmanesh, Supercond. Sci. Tech. 19 S261-S265, 2006
[67] N. Kasai, N. Ishikawa, H. Yamakawa, K. Chinone, S. Nakayama, and A. Odawara, IEEE Trans. Appl. Supercond. 7 2315, 1997
[68] J. T. Jeng, H. E. Horng, and H. C. Yang, Physica C 368 105-108, 2002
[69] Y. Zhang, H. Soltner, H.-J. Krause, E. Sodtke, W. Zander, J. Schubert, M. Grüneklee, D. Lomparski, M. Banzet, H. Bousack, and A. I. Braginski, IEEE Trans. Appl. Supercond. 7 2866, 1997
[70] J. E. Zimmerman, P. Thiene, and J. T. Harding, J. Appl. Phys. 41 1572, 1970
[71] C. M. Falco and W. H. Parker, J. Appl. Phys. 46 3238, 1975
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32489-
dc.description.abstractThe superconducting quantum interference device (SQUID) is one of the important applications of high-TC superconductors. Since the high sensitivity to magnetic fields, the SQUID magnetometers have been used in many researches on weak field detections. They have been widely used in non-destructive evaluation (NDE), scanning SQUID microscope (SSM), magnetocardiology (MCG), magnetoencephalography (MEG), and low field nuclear magnetic resonance (NMR). Most of the high-TC SQUID magnetometers in use are dc SQUIDs. The dc SQUID has two Josephson junctions in a superconducting ring. In an rf SQUID, there is only one Josephson junction. The signal of the rf SQUID is read out by a copper loop inductively coupled to the SQUID through a LC resonant circuit. A great improvement of high-TC rf SQUIDs was done by Zhang et al. in Jülich Research Center, Germany. They have developed many kinds of high-TC rf SQUIDs. The flux concentrator further improves the effective area of the magnetometer. The noise level can be as lower as that of high-TC dc SQUIDs. Recently, they used a substrate resonator which cause the SQUID more stable and to be set up more simply.
In this work, I try to study the noise characteristics of the high-TC rf SQUID magnetometers. A new designed rf SQUID magnetometer is developed. The principle of rf SQUID and the development of high-TC rf SQUID magnetometer are introduced in chapter 1 The preparations of the flux concentrator and the rf SQUID are in chapter 2. Measuring procedures including the resonant frequency, the effective area and the noise spectral density are also in this chapter. Chapter 3 shows variations of the effective area and resonant frequency due to changing the size of the superconducting flux concentrator. The flux noise of the high-TC rf SQUID magnetometer is resonant-frequency-dependent. The experiment results are fitted by Chesca’s formula. In chapter 4, we developed a new design which is called an integrated rf SQUID magnetometer. The rf SQUID is fabricated directly onto the SrTiO3 substrate resonator. The same concept is used to design a integrated 1st order planar gradiometer in chapter 5.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:52:27Z (GMT). No. of bitstreams: 1
ntu-95-D90222007-1.pdf: 11760361 bytes, checksum: 70da3ae66bca61980081702a19b18a3a (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 principle of rf SQUID
1.1.1 Flux relation of the SQUID loop
1.1.2 SQUID readout and LC resonant circuit
1.1.3 Flux-locked-loop and SQUID output
1.2 development of HTS rf SQUID magnetometer
1.2.1 First generation
1.2.2 Second generation
1.2.3 Third generation
1.2.4 SQUID with substrate resonator
Chapter 2 Experiment 13
2.1 SQUID fabrication
1.1.1 Thin film deposition
1.1.2 Photolithography and etching
1.1.3 Bicrystalline substrate
2.2. Resonant frequency
2.2.1 Resonator
2.2.2 Network analyzer
2.3 Read-out of the rf SQUID
2.3.1 Set-up
2.3.2 SQUID electronics
2.3.3 Test mode output and V-Φ curve
2.3.4 Adjustment of the working point
2.4 Effective area
2.4.1 Field noise and effective area
2.4.2 Helmholtz coil
2.4.3 Estimation of effective area
2.5 Noise spectral density
2.5.1 Spectrum analyzer
2.5.2 Magnetic shielding
Chapter 3 rf SQUID magnetometer coupled to
substrate resonator 32
3.1 Basic idea
3.1.1 Substrate resonator
3.1.2 Washer-type flux concentrator
3.1.3 Flux noise and resonant frequency
3.1.4 Optimization of flux concentrator
3.2 Flux concentrator and effective area
3.2.1 rf SQUID magnetometer coupled to tank circuit
3.2.2 rf SQUID magnetometer coupled to substrate resonator
3.3 Resonant frequency of the substrate resonator
3.4 Noise performance
Chapter 4 rf SQUID magnetometer integrated
on substrate resonator 51
4.1 Basic idea
4.2 Results
4.2.1 Resonant frequency
4.2.2 Voltage-flux curve and effective area
4.2.3 Noise spectral density
4.3 Discussion
Chapter 5 rf SQUID gradiometer integrated
on substrate resonator 60
5.1 Concept of planar gradiometer
5.1.1 Introduction to gradiometer
5.1.2 rf double-hole gradiometer
5.2 Uniform field gradient
5.3 The first design of integrated gradiometer
5.3.1 Layout of the gradiometer
5.3.2 Results and discussion
5.4 The second design of integrated gradiometer
5.4.1 Layout of the gradiometer
5.4.2 Results and discussion
Chapter 6 Conclusion 77
Reference 79
dc.language.isoen
dc.title積體式高溫超導交流量子干涉元件製作及其特性研究zh_TW
dc.titleFabrication and Characterization of Integrated High-TC Radio-Frequency Superconducting Quantum Interference Deviceen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭義雄,洪姮娥,王立民,莊振益,鄭振宗,楊謝樂
dc.subject.keyword超導,量子干涉元件,磁量計,zh_TW
dc.subject.keywordsuperconductor,rf SQUID,magnetometer,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
11.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved