請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32475完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑩英 | |
| dc.contributor.author | Yang-Kai Lue | en |
| dc.contributor.author | 呂楊凱 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:51:36Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-25 | |
| dc.identifier.citation | [1] Manfredo Perdigeao do Carmo, Riemannian Geometry., p163
[2] Jeff Cheeger and David G.Ebin, Comparison Theorems in Riemannian Geome- try. Ann of Math., 95 (1972), 417-491. [3] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal sur- faces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33 (1980), 199-211. [4] R. Schoen and Shing-Tung Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curva- ture Annals of Mathematics, 110(1979), 127-142. [5] R. Schoen and S.T. Yau, Lectures on Differential Geometry. [6] Peter Li, Lecture Notes on Geometric Analysis. [7] Jiaping Wang, Lecture Notes on Geometric Analysis. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32475 | - |
| dc.description.abstract | 這篇論文主要是比較截面曲率,瑞奇曲率和純量曲率所反映出的幾何性質。藉由整理許多相關的定理,比較不同曲率條件下所反映出不同幾何與拓樸的結果。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:51:36Z (GMT). No. of bitstreams: 1 ntu-95-R93221004-1.pdf: 239503 bytes, checksum: 339d657c175c0a5c1324c17bacb8ef0e (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Introduction v
1 Preliminaries 1 1.1 Notation and preliminaries 1 2 The first and second variation formulas 4 3 Space form 7 4 From curvatres to topology 10 4.1 From sectional curvature to topology 10 4.2 From Ricci curvature to topology 13 4.3 From scalar curvature to topology 15 Bibliography 18 | |
| dc.language.iso | en | |
| dc.subject | 純量曲率 | zh_TW |
| dc.subject | 截面曲率 | zh_TW |
| dc.subject | 瑞奇曲率 | zh_TW |
| dc.subject | scalar curvature | en |
| dc.subject | sectional curvature | en |
| dc.subject | Ricci curvature | en |
| dc.title | 曲率所反映的幾何性質 | zh_TW |
| dc.title | The Geometry Implied from Curvatures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王藹農,蔡東和,張樹城 | |
| dc.subject.keyword | 截面曲率,瑞奇曲率,純量曲率, | zh_TW |
| dc.subject.keyword | sectional curvature,Ricci curvature,scalar curvature, | en |
| dc.relation.page | 18 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 233.89 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
